

Game TeleporterGame Teleporter
A Development Tool For EveryoneA Development Tool For Everyone

Presented By Tony MorelliPresented By Tony Morelli

4/13/20074/13/2007

OutlineOutline

 BackgroundBackground
 OverviewOverview
 DefinitionsDefinitions
 StudyStudy
 MethodologyMethodology
 Conclusion/QuestionsConclusion/Questions

Who Am I?Who Am I?

 BSEE Purdue UniversityBSEE Purdue University

 Platform Architect - Bally TechnologiesPlatform Architect - Bally Technologies
 Design Class 2 (Bingo) Games For Tribal CasinosDesign Class 2 (Bingo) Games For Tribal Casinos

UNR ProjectsUNR Projects

 Ambient Displays Of User MoodAmbient Displays Of User Mood
 Predicted Mood Of A User And Displayed On A ScreenPredicted Mood Of A User And Displayed On A Screen
 If Prediction Was Wrong, User Could Press A ButtonIf Prediction Was Wrong, User Could Press A Button
 C4.5 Was Used To Do The PredictingC4.5 Was Used To Do The Predicting
 Looked At Movement, And Keyboard And Mouse Looked At Movement, And Keyboard And Mouse

MovementsMovements
 Predicted Whether I Was Thinking Or ContentPredicted Whether I Was Thinking Or Content
 Predicted OK For Me, Probably Not OK For OthersPredicted OK For Me, Probably Not OK For Others

UNR ProjectsUNR Projects
 Ambient Displays Of User MoodAmbient Displays Of User Mood

UNR ProjectsUNR Projects
 Computer Generated Tic Tac Toe PlayerComputer Generated Tic Tac Toe Player

 Co-Evolution And Neural Networks To Create PlayerCo-Evolution And Neural Networks To Create Player
 Inputs To Neural Net – Board PositionsInputs To Neural Net – Board Positions
 Inputs To Neural Net – Whose TurnInputs To Neural Net – Whose Turn
 Output - What Square To Place TokenOutput - What Square To Place Token
 Evolved Against MiniMax Perfect PlayerEvolved Against MiniMax Perfect Player
 Evolved Player As Good As MiniMax Perfect PlayerEvolved Player As Good As MiniMax Perfect Player
 Co-Evolved Player As Good As MiniMax Perfect PlayerCo-Evolved Player As Good As MiniMax Perfect Player

UNR ProjectsUNR Projects

 SP2000 RoboGolf CompetitorSP2000 RoboGolf Competitor
 Collect Golf Balls And Return Them To The Collect Golf Balls And Return Them To The

Goal Located In The Center Of The RingGoal Located In The Center Of The Ring

UNR ProjectsUNR Projects

 Detecting Motion In Video GamesDetecting Motion In Video Games
 Control A Video Game System From ComputerControl A Video Game System From Computer
 Look At 3 Sequential FramesLook At 3 Sequential Frames
 Subtract Each One To Identify MotionSubtract Each One To Identify Motion
 Move Character Based On Objects In PathMove Character Based On Objects In Path
 Control Through Parallel PortControl Through Parallel Port
 Worked, But To Slow To Be UsefulWorked, But To Slow To Be Useful

UNR ProjectsUNR Projects

 Detecting Motion In Video GamesDetecting Motion In Video Games

UNR ProjectsUNR Projects

 Xbox Controller ControllerXbox Controller Controller
 Control An Xbox From Anywhere Without Control An Xbox From Anywhere Without

Opening An Xbox ControllerOpening An Xbox Controller
 TCP/IP Protocol From Controlling Device TCP/IP Protocol From Controlling Device

(Playstation Portable) To Controller(Playstation Portable) To Controller
 Gumstix Received Commands Sent Them Via Gumstix Received Commands Sent Them Via

Serial To Basic Stamp 2 Which Controlled ServosSerial To Basic Stamp 2 Which Controlled Servos

UNR ProjectsUNR Projects

 Xbox Controller ControllerXbox Controller Controller

UNR ProjectsUNR Projects

 Cross Platform Multiplayer GameCross Platform Multiplayer Game
 Play A Game On A Playstation Portable Against Play A Game On A Playstation Portable Against

Someone Playing The Same Game On A Nintendo Someone Playing The Same Game On A Nintendo
DSDS

 Simple Idea Difficult To ImplementSimple Idea Difficult To Implement
 Both Support C Compilers – However Many Both Support C Compilers – However Many

DifferencesDifferences
 How To Display An Image, Get Input, And Play A How To Display An Image, Get Input, And Play A

Sound Different On Each TargetSound Different On Each Target

UNR ProjectsUNR Projects

 Cross Platform Multiplayer GameCross Platform Multiplayer Game

 Need To Make This Easier To DevelopNeed To Make This Easier To Develop

MotivationMotivation

 Creating A Game On Multiple Platforms Creating A Game On Multiple Platforms
Should Be EasierShould Be Easier

 Tool Could Be Used For Education As WellTool Could Be Used For Education As Well
 Flexible Development Environment Should Flexible Development Environment Should

Allow Developers To Develop Exactly How Allow Developers To Develop Exactly How
They Want For Whatever Platform They NeedThey Want For Whatever Platform They Need

OverviewOverview

 The Game Teleporter Sets Up The Framework The Game Teleporter Sets Up The Framework
For Easy Multiplatform DevelopmentFor Easy Multiplatform Development

 Great Tool For Educational PurposesGreat Tool For Educational Purposes
 Easier To Generate ProgramsEasier To Generate Programs
 Easier To Learn New Development EnvironmentsEasier To Learn New Development Environments
 Easier To Learn New Target PlatformsEasier To Learn New Target Platforms

DefinitionsDefinitions

 Development EnvironmentDevelopment Environment
 A Way Of Creating A ProgramA Way Of Creating A Program
 Adobe FlashAdobe Flash

 Format Used By Web DevelopersFormat Used By Web Developers
 Easy To Program ForEasy To Program For

 Adobe PhotoshopAdobe Photoshop
 Simple Yet Powerful File FormatSimple Yet Powerful File Format

 Custom InterfaceCustom Interface
 Good For Beginning ProgrammersGood For Beginning Programmers

DefinitionsDefinitions

 Target Platform – Device Or Environment Target Platform – Device Or Environment
Where A Program Will RunWhere A Program Will Run
 Playstation PortablePlaystation Portable
 Nintendo DSNintendo DS
 QBasicQBasic
 Visual BasicVisual Basic

OverviewOverview

 Composed Of Input Plugins and Output Composed Of Input Plugins and Output
PluginsPlugins

 Any Input Plugin Can Be Used To Design The Any Input Plugin Can Be Used To Design The
SoftwareSoftware

 Any Output Plugin Can Be Used To Generate Any Output Plugin Can Be Used To Generate
An Executable Program On The Selected An Executable Program On The Selected
TargetTarget

StudyStudy

 A Study Was Conducted With 18 IndividualsA Study Was Conducted With 18 Individuals
 Ages 13-50Ages 13-50
 Skills – Skills –

 No Computer Experience (Outside Of Simple Applications No Computer Experience (Outside Of Simple Applications
– Internet, Email, Word, etc)– Internet, Email, Word, etc)

 Computer GamerComputer Gamer
 Professional Computer ProgrammerProfessional Computer Programmer

 Goal – Create A Simple Game That Demonstrates Goal – Create A Simple Game That Demonstrates
User Input And Displaying Images On Multiple User Input And Displaying Images On Multiple
Platforms Without Any Programming By The UserPlatforms Without Any Programming By The User

StudyStudy

 Participants In The Study Created A Game Participants In The Study Created A Game
Similar To PongSimilar To Pong

 No Code Was WrittenNo Code Was Written
 Used A Custom Program To Step Through The Used A Custom Program To Step Through The

ProcessProcess
 Game Teleporter Generated And Built All Game Teleporter Generated And Built All

CodeCode
 Playstation PortablePlaystation Portable
 Visual Basic.Net (PC Game)Visual Basic.Net (PC Game)

 Questions Were AskedQuestions Were Asked

Study - VideoStudy - Video

Study - VideoStudy - Video

Study - QuestionsStudy - Questions

 (1) Did You Think It Would Be That Easy To (1) Did You Think It Would Be That Easy To
Create A Game?Create A Game?

 (2) Was The Game Interesting?(2) Was The Game Interesting?
 (3) Which Game Was Better, PSP Or Visual (3) Which Game Was Better, PSP Or Visual

Basic?Basic?
 (4) Did Using This Application Make You (4) Did Using This Application Make You

Want To Be A Computer Programmer?Want To Be A Computer Programmer?
 (5) Do You Have Any Questions?(5) Do You Have Any Questions?

Study - PredictionsStudy - Predictions

 This Software Was So Great Everyone Who This Software Was So Great Everyone Who
Used It Would Want To Write Software For A Used It Would Want To Write Software For A
Living.Living.

Study ResultsStudy Results

 (1) Did You Think It Would Be That Easy To (1) Did You Think It Would Be That Easy To
Create A Game?Create A Game?
 Non Programmers Did Not Think It Would Be Non Programmers Did Not Think It Would Be

That Easy To Create A GameThat Easy To Create A Game
 Programmers Were More Impressed That A Game Programmers Were More Impressed That A Game

Was Created That Easily For The Playstation Was Created That Easily For The Playstation
Portable As Opposed To The PC Version.Portable As Opposed To The PC Version.

Study - ResultsStudy - Results

 (2) Was The Game Interesting?(2) Was The Game Interesting?
 Most Common Answer – It Would Be Better If It Most Common Answer – It Would Be Better If It

Kept ScoreKept Score
 Younger Gamers Wanted To Immediately Know Younger Gamers Wanted To Immediately Know

How To ‘Beat The Game’ – There Was No Way To How To ‘Beat The Game’ – There Was No Way To
Beat itBeat it

 Experienced Programmers Overlooked The Experienced Programmers Overlooked The
Simplistic Game And Saw The Potential Of The Simplistic Game And Saw The Potential Of The
ToolTool

Study - ResultsStudy - Results

 (3) Which Game Was Better, PSP Or Visual Basic?(3) Which Game Was Better, PSP Or Visual Basic?
 Older Participants (College Age And Older) Were More Older Participants (College Age And Older) Were More

Interested In The Visual Basic PC VersionInterested In The Visual Basic PC Version
 Final Game Could Be Run On Their Own PCFinal Game Could Be Run On Their Own PC

 Younger Group Was More Interested In The PSP Version Younger Group Was More Interested In The PSP Version
Because Of The ‘Cool Factor’Because Of The ‘Cool Factor’
 None Of The Kids In The Study Owned A PSP, However They All None Of The Kids In The Study Owned A PSP, However They All

Knew The Cool Kid That Had OneKnew The Cool Kid That Had One
 Making A Game Run On A PSP Could Turn A Normal Kid Into A Making A Game Run On A PSP Could Turn A Normal Kid Into A

Cool KidCool Kid

Study - ResultsStudy - Results

 (4) Did Using This Application Make You (4) Did Using This Application Make You
Want To Be A Computer Programmer?Want To Be A Computer Programmer?
 Only Asked To Non ProgrammersOnly Asked To Non Programmers
 The Answer, Unfortunately, Was No In All CasesThe Answer, Unfortunately, Was No In All Cases

Study - ResultsStudy - Results

 (5) Do You Have Any Questions?(5) Do You Have Any Questions?
 Longest Part Of The StudyLongest Part Of The Study
 Engineers Wanted To Know In Detail How Engineers Wanted To Know In Detail How

Everything WorkedEverything Worked
 Perspective Engineers Wanted To Know How To Perspective Engineers Wanted To Know How To

Write ProgramsWrite Programs
 Non Engineers Made Suggestions To Make It Non Engineers Made Suggestions To Make It

BetterBetter

Study - ConclusionStudy - Conclusion

 The Game Teleporter Did Not Make Everyone The Game Teleporter Did Not Make Everyone
Want To Drop Everything And Write SoftwareWant To Drop Everything And Write Software

 It Did Make Everyone Ask Questions And It Did Make Everyone Ask Questions And
Begin To Think About What Role Each Person Begin To Think About What Role Each Person
Could Play In A Development TeamCould Play In A Development Team

 Overall It Was A Complete SuccessOverall It Was A Complete Success

Similar ProjectsSimilar Projects
 Code ConverterCode Converter

 Do Not Work Very WellDo Not Work Very Well
 Most Convert Between Similar LanguagesMost Convert Between Similar Languages

 The Game Maker’s ApprenticeThe Game Maker’s Apprentice
 Forced To Use Supplied InterfaceForced To Use Supplied Interface
 Does Not Support Multiple TargetsDoes Not Support Multiple Targets

 Game EditorGame Editor
 Forced To Use Supplied InterfaceForced To Use Supplied Interface
 Supports Multiple Targets, But Only The Targets The Creator Of The Software Supports Multiple Targets, But Only The Targets The Creator Of The Software

Wants To SupportWants To Support
 Run Time Interpreter (JAVA,Flash)Run Time Interpreter (JAVA,Flash)

 Requires Distributor Of JAVA or Flash To Write A Runtime Interpreter For Requires Distributor Of JAVA or Flash To Write A Runtime Interpreter For
Each Target PlatformEach Target Platform

 Author Of The Interpreter May Not Be An ExpertAuthor Of The Interpreter May Not Be An Expert
 Run Time Interpretation Is SlowRun Time Interpretation Is Slow

Game Teleporter BenefitsGame Teleporter Benefits

 Open Source Allows Experts To ContributeOpen Source Allows Experts To Contribute
 If A New Plugin Is Required The User Has The If A New Plugin Is Required The User Has The

Option To Become An Expert In The Field, Or Option To Become An Expert In The Field, Or
Find An Expert To Write The PluginFind An Expert To Write The Plugin

 Not Dependant On The Distributor Of The Not Dependant On The Distributor Of The
Software To Write PluginsSoftware To Write Plugins

 No Run Time Interpretation, All Code Is Built No Run Time Interpretation, All Code Is Built
For A Specific TargetFor A Specific Target

Software DesignSoftware Design

 Input Plugins Convert To Intermediate FormatInput Plugins Convert To Intermediate Format
 Output Plugins Read Intermediate Format And Output Plugins Read Intermediate Format And

Convert To Specific Target.Convert To Specific Target.
 Psd Plugin Takes Images From Layers And Generates Psd Plugin Takes Images From Layers And Generates

Intermediate Code To Play A Slide ShowIntermediate Code To Play A Slide Show
 Playstation Portable Output Plugin Takes Playstation Portable Output Plugin Takes

Intermediate Code And Generates And Builds Native Intermediate Code And Generates And Builds Native
PSP Code To Run A Slide Show Based On The Psd PSP Code To Run A Slide Show Based On The Psd
File On The Playstation Portable ItselfFile On The Playstation Portable Itself

Input PluginsInput Plugins

 Adobe FlashAdobe Flash
 Adobe PhotoshopAdobe Photoshop
 Custom Game Creation PluginCustom Game Creation Plugin

Flash Input PluginFlash Input Plugin

 Written In C++Written In C++
 Over 2000 Lines Of CodeOver 2000 Lines Of Code
 Implementation Of Variables And StackImplementation Of Variables And Stack

Psd Input PluginPsd Input Plugin

 Written In C++Written In C++
 Over 1000 Lines Of CodeOver 1000 Lines Of Code
 Supports Displaying Of ImagesSupports Displaying Of Images
 Uses ImageMagickUses ImageMagick

 Open Source Command Line Graphics PackageOpen Source Command Line Graphics Package
 Converts Layers To PngsConverts Layers To Pngs

Custom Game Creation PluginCustom Game Creation Plugin

 Written In C#Written In C#
 Over 1500 Lines Of CodeOver 1500 Lines Of Code
 Generates Intermediate Code For A Pong-Like Generates Intermediate Code For A Pong-Like

GameGame

Intermediate File FormatIntermediate File Format

 Images Stored As PNGsImages Stored As PNGs
 Source Code Is “c-like”Source Code Is “c-like”
 Supports Images, Include Files, User Defined Supports Images, Include Files, User Defined

FunctionsFunctions

Intermediate File Format - SampleIntermediate File Format - Sample

Output PluginsOutput Plugins

 Starts With Skeleton Set Of FilesStarts With Skeleton Set Of Files
 Skeleton Set – All Required Files To Build An AppSkeleton Set – All Required Files To Build An App
 Inside Of Skeleton Set Are TagsInside Of Skeleton Set Are Tags

 INCLUDES, DECLARATIONS, MAINLOOP, INCLUDES, DECLARATIONS, MAINLOOP,
FUNCTIONSFUNCTIONS

 Output Plugin Generates Code For The Different Sets Output Plugin Generates Code For The Different Sets
Of Tags Based On Intermediate Files.Of Tags Based On Intermediate Files.

 Generated Code Is Inserted Into The Proper Place In Generated Code Is Inserted Into The Proper Place In
The Proper FilesThe Proper Files

 All Output Plugins Must Implement Required All Output Plugins Must Implement Required
FunctionsFunctions

Visual Basic.Net Output PluginVisual Basic.Net Output Plugin

 Written In C++Written In C++
 Over 1100 Lines Of CodeOver 1100 Lines Of Code
 Skeleton Set Of Files Includes SolutionSkeleton Set Of Files Includes Solution

 Dim count As Int16 = 0Dim count As Int16 = 0
 While 1While 1
 Application.DoEvents()Application.DoEvents()
 '<MAINLOOP>'<MAINLOOP>
 '</MAINLOOP>'</MAINLOOP>
 End IfEnd If
 End WhileEnd While

Visual Basic.Net Output PluginVisual Basic.Net Output Plugin

 After Code Generation Plugin Invokes After Code Generation Plugin Invokes
Command Line BuilderCommand Line Builder
 Devenv /build debug template.sln Will Build Devenv /build debug template.sln Will Build

Template.SlnTemplate.Sln

PSP Output PluginPSP Output Plugin

 Written In C++Written In C++
 Over 700 Lines Of CodeOver 700 Lines Of Code
 Skeleton File Includes All Files Necessary To Skeleton File Includes All Files Necessary To

Build A PSP GameBuild A PSP Game
 Copies Files To Build Environment Within Copies Files To Build Environment Within

CygwinCygwin
 Can Run Unsigned Code Because Of The ‘%’ Can Run Unsigned Code Because Of The ‘%’

CharacterCharacter

PSP Output PluginPSP Output Plugin
 Skeleton FileSkeleton File

 while (1)while (1)
 {{
 clearScreen(0xff);clearScreen(0xff);
 //<MAINLOOP>//<MAINLOOP>
 //</MAINLOOP>//</MAINLOOP>
 sceDisplayWaitVblankStart();sceDisplayWaitVblankStart();
 flipScreen();flipScreen();
 if (button.Buttons & PSP_CTRL_TRIANGLE)if (button.Buttons & PSP_CTRL_TRIANGLE)
 {{
 sceKernelSleepThread();sceKernelSleepThread();
 return 0; return 0;
 break;break;
 }}
 sceKernelDelayThread(10000);sceKernelDelayThread(10000);
 }}

QBasic Output PluginQBasic Output Plugin

 Written In C++Written In C++
 Over 1000 Lines Of CodeOver 1000 Lines Of Code
 DOS Requires Filenames Of Only 8 DOS Requires Filenames Of Only 8

CharactersCharacters
 Variables And Functions Have Special Variables And Functions Have Special

Characters At The End Of Names As Characters At The End Of Names As
Designations Of Variable TypeDesignations Of Variable Type
 Had To Keep Track Of Variable Types So They Had To Keep Track Of Variable Types So They

Were Printed Correctly In Basic Output FileWere Printed Correctly In Basic Output File

QBasic Output PluginQBasic Output Plugin
 Skeleton FileSkeleton File

 DO WHILE k$ <> ""DO WHILE k$ <> ""

 IF k$ = CHR$(27) THEN ENDIF k$ = CHR$(27) THEN END
 IF k$ = "W" THEN upPressed% = 1IF k$ = "W" THEN upPressed% = 1
 IF k$ = "S" THEN downPressed% = 1IF k$ = "S" THEN downPressed% = 1
 IF k$ = "A" THEN leftPressed% = 1IF k$ = "A" THEN leftPressed% = 1
 IF k$ = "D" THEN rightPressed% = 1IF k$ = "D" THEN rightPressed% = 1
 k$ = INKEYk = INKEY$
 LOOPLOOP
 END DEFEND DEF
 DODO
 updateNeeded% = 0updateNeeded% = 0
 REM <MAINLOOP>REM <MAINLOOP>
 REM </MAINLOOP> REM </MAINLOOP>
 LOOPLOOP
 REM </FILE>REM </FILE>

Create Bounce Game Source CodeCreate Bounce Game Source Code

 Intermediate Code PSP Code VB.Net CodeIntermediate Code PSP Code VB.Net Code

Create Bounce Game Source CodeCreate Bounce Game Source Code

 Intermediate Code PSP Code VB.Net Code

SummarySummary

 The Game Teleporter Sets Up The Framework The Game Teleporter Sets Up The Framework
For Easy Multiplatform DevelopmentFor Easy Multiplatform Development

 Great Tool For Educational PurposesGreat Tool For Educational Purposes
 Easier To Generate ProgramsEasier To Generate Programs
 Easier To Learn New Development EnvironmentsEasier To Learn New Development Environments
 Easier To Learn New Target PlatformsEasier To Learn New Target Platforms

Summary ContinuedSummary Continued

 Demonstrated Both The Design And Demonstrated Both The Design And
Implementation Of An Entire ProjectImplementation Of An Entire Project

 Appropriate Languages Were Used (C# For Appropriate Languages Were Used (C# For
User Interface, C++ For The Game Teleporter User Interface, C++ For The Game Teleporter
Itself)Itself)

 Create A Study And Analyze The ResultsCreate A Study And Analyze The Results

Future WorkFuture Work

 This Project Is Open SourceThis Project Is Open Source
 Source Is Available Now AtSource Is Available Now At

 http://www.tonymorelli.comhttp://www.tonymorelli.com

 Will Be On SourceforgeWill Be On Sourceforge
 Plugins Will Be Created By The Experts In Plugins Will Be Created By The Experts In

Each AreaEach Area
 Paper Will Be Presented At FIE 2007Paper Will Be Presented At FIE 2007

http://www.tonymorelli.com/

Questions/CommentsQuestions/Comments

	Game Teleporter A Development Tool For Everyone
	Outline
	Who Am I?
	UNR Projects
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Motivation
	Overview
	Definitions
	Slide 17
	Slide 18
	Study
	Slide 20
	Study - Video
	Slide 22
	Study - Questions
	Study - Predictions
	Study Results
	Study - Results
	Slide 27
	Slide 28
	Slide 29
	Study - Conclusion
	Similar Projects
	Game Teleporter Benefits
	Software Design
	Input Plugins
	Flash Input Plugin
	Psd Input Plugin
	Custom Game Creation Plugin
	Intermediate File Format
	Intermediate File Format - Sample
	Output Plugins
	Visual Basic.Net Output Plugin
	Slide 42
	PSP Output Plugin
	Slide 44
	QBasic Output Plugin
	Slide 46
	Create Bounce Game Source Code
	Slide 48
	Summary
	Summary Continued
	Future Work
	Questions/Comments

	Widget0: <INCLUDES>
#include "Pictures.h"
//picts[0] = my paddle
//picts[1] = ball
//picts[2] = opponent paddle

</INCLUDES>
<DECLARATIONS>
InputButton button;
int ballVertDirection = 1;
int ballHorizDirection = 1;
int moveDelta = 10;
int oppMoveDelta = 10;
void MoveBall();
void MoveOpponent();
void MovePlayer();
void UpdateScreen();

</DECLARATIONS>
<MAINLOOP>
 GetInput();
 MoveBall();
 MoveOpponent();
 MovePlayer();
 UpdateScreen();
</MAINLOOP>
<FUNCTIONS>

void MoveBall()
{
 if (ballVertDirection == 1)
 {
 picts[1].top = picts[1].top + 1;
 picts[1].bottom = picts[1].bottom + 1;
 }
 else
 {
 picts[1].top = picts[1].top - 1;
 picts[1].bottom = picts[1].bottom - 1;
 }
 if (ballHorizDirection == 1)
 {
 picts[1].left = picts[1].left + 1;
 picts[1].right = picts[1].right + 1;
 }
 else
 {
 picts[1].left = picts[1].left - 1;
 picts[1].right = picts[1].right - 1;
 }

 if (picts[1].left > 290)
 {
 ballHorizDirection = 0;
 }
 else if (picts[1].left < 10)
 {
 ballHorizDirection = 1;
 }
 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)
 {
 ballVertDirection = 1;
 }
 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)
 {
 ballVertDirection = 0;

 if (button & RIGHT)
 {
 ballHorizDirection = 1;
 }
 else if (button & LEFT)
 {
 ballHorizDirection = 0;
 }
 }
 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))
 {
 ballVertDirection = 1;
 picts[1].top = picts[2].top + 15 + 10;
 picts[1].bottom = picts[2].bottom + 15 + 10;
 }
 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))
 {
 ballVertDirection = 0;
 picts[1].top = picts[0].top - 10;
 picts[1].bottom = picts[0].bottom - 10;
 }
}

void MoveOpponent()
{
 if (picts[2].left + 30 > picts[1].left)
 {
 picts[2].left = picts[2].left - oppMoveDelta;
 picts[2].right = picts[2].right - oppMoveDelta;
 }
 if (picts[2].left + 30 < picts[1].left)
 {
 picts[2].left = picts[2].left + oppMoveDelta;
 picts[2].right = picts[2].right + oppMoveDelta;
 }
}
void MovePlayer()
{
 if (button & RIGHT)
 {
 picts[0].left = picts[0].left + moveDelta;
 picts[0].right = picts[0].right + moveDelta;
 }
 if (button & LEFT)
 {
 picts[0].left = picts[0].left - moveDelta;
 picts[0].right = picts[0].right - moveDelta;
 }
}
void UpdateScreen()
{
 HideImage(picts[0]);
 HideImage(picts[1]);
 HideImage(picts[2]);

 DisplayImage(picts[0]);
 DisplayImage(picts[1]);
 DisplayImage(picts[2]);
}

</FUNCTIONS>

	_2: void MovePlayer()
{
 if (button & RIGHT)
 {
 picts[0].left = picts[0].left + moveDelta;
 picts[0].right = picts[0].right + moveDelta;
 }
 if (button & LEFT)
 {
 picts[0].left = picts[0].left - moveDelta;
 picts[0].right = picts[0].right - moveDelta;
 }
}

	1: void MovePlayer()
{
 if (button.Buttons & RIGHT)
 {
 picts[0].left = picts[0].left + moveDelta;
 picts[0].right = picts[0].right + moveDelta;
 }
 if (button.Buttons & LEFT)
 {
 picts[0].left = picts[0].left - moveDelta;
 picts[0].right = picts[0].right - moveDelta;
 }
}

	2: Private Sub MovePlayer()
 if (rightPressed = True) Then
 picts(0).left = picts(0).left + moveDelta
End If
 if (leftPressed = True) Then
 picts(0).left = picts(0).left - moveDelta
End If
End Sub

	_3: <INCLUDES>
#include "Pictures.h"
//picts[0] = my paddle
//picts[1] = ball
//picts[2] = opponent paddle

</INCLUDES>
<DECLARATIONS>
InputButton button;
int ballVertDirection = 1;
int ballHorizDirection = 1;
int moveDelta = 10;
int oppMoveDelta = 10;
void MoveBall();
void MoveOpponent();
void MovePlayer();
void UpdateScreen();

</DECLARATIONS>
<MAINLOOP>
 GetInput();
 MoveBall();
 MoveOpponent();
 MovePlayer();
 UpdateScreen();
</MAINLOOP>
<FUNCTIONS>

void MoveBall()
{
 if (ballVertDirection == 1)
 {
 picts[1].top = picts[1].top + 1;
 picts[1].bottom = picts[1].bottom + 1;
 }
 else
 {
 picts[1].top = picts[1].top - 1;
 picts[1].bottom = picts[1].bottom - 1;
 }
 if (ballHorizDirection == 1)
 {
 picts[1].left = picts[1].left + 1;
 picts[1].right = picts[1].right + 1;
 }
 else
 {
 picts[1].left = picts[1].left - 1;
 picts[1].right = picts[1].right - 1;
 }

 if (picts[1].left > 290)
 {
 ballHorizDirection = 0;
 }
 else if (picts[1].left < 10)
 {
 ballHorizDirection = 1;
 }
 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)
 {
 ballVertDirection = 1;
 }
 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)
 {
 ballVertDirection = 0;

 if (button & RIGHT)
 {
 ballHorizDirection = 1;
 }
 else if (button & LEFT)
 {
 ballHorizDirection = 0;
 }
 }
 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))
 {
 ballVertDirection = 1;
 picts[1].top = picts[2].top + 15 + 10;
 picts[1].bottom = picts[2].bottom + 15 + 10;
 }
 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))
 {
 ballVertDirection = 0;
 picts[1].top = picts[0].top - 10;
 picts[1].bottom = picts[0].bottom - 10;
 }
}

void MoveOpponent()
{
 if (picts[2].left + 30 > picts[1].left)
 {
 picts[2].left = picts[2].left - oppMoveDelta;
 picts[2].right = picts[2].right - oppMoveDelta;
 }
 if (picts[2].left + 30 < picts[1].left)
 {
 picts[2].left = picts[2].left + oppMoveDelta;
 picts[2].right = picts[2].right + oppMoveDelta;
 }
}
void MovePlayer()
{
 if (button & RIGHT)
 {
 picts[0].left = picts[0].left + moveDelta;
 picts[0].right = picts[0].right + moveDelta;
 }
 if (button & LEFT)
 {
 picts[0].left = picts[0].left - moveDelta;
 picts[0].right = picts[0].right - moveDelta;
 }
}
void UpdateScreen()
{
 HideImage(picts[0]);
 HideImage(picts[1]);
 HideImage(picts[2]);

 DisplayImage(picts[0]);
 DisplayImage(picts[1]);
 DisplayImage(picts[2]);
}

</FUNCTIONS>

	1_2: #include <pspdisplay.h>
#include <pspctrl.h>
#include <pspkernel.h>
#include <pspdebug.h>
#include <pspgu.h>
#include <png.h>
#include <stdio.h>
#include "graphics.h"

#define RIGHT PSP_CTRL_RIGHT
#define LEFT PSP_CTRL_LEFT

//<INCLUDES>
#include "Pictures.h"
//picts[0] = my paddle
//picts[1] = ball
//picts[2] = opponent paddle

#define printf pspDebugScreenPrintf
#define MAX(X,Y) ((X)>(Y) ? (X):(Y))

//<DECLARATIONS>
SceCtrlData button;
int ballVertDirection = 1;
int ballHorizDirection = 1;
int moveDelta = 10;
int oppMoveDelta = 10;
void MoveBall();
void MoveOpponent();
void MovePlayer();
void UpdateScreen();

PSP_MODULE_INFO("OutApp",0,1,1);

SceCtrlData ProcessInputs();
void ClearCurrentScreen();
void DisplayImage(struct Picture _pict);
void HideImage(struct Picture _pict);

Image * ourImage[10];
				
//PSP_MODULE_INFO("Image Display Program",0,1,1);
int exit_callback(int arg1, int arg2, void * common)
{
 sceKernelExitGame();
 return 0;
}
int CallbackThread(SceSize args, void * argp)
{
 int cbid;
 cbid = sceKernelCreateCallback("Exit Callback", exit_callback, NULL);
 sceKernelRegisterExitCallback(cbid);
 sceKernelSleepThreadCB();
 return 0;
}
int SetupCallbacks(void)
{
 int thid = 0;
 thid = sceKernelCreateThread("update_thread", CallbackThread,
 0x11, 0xFA0,0,0);
 if (thid >=0)
 {
 sceKernelStartThread(thid,0,0);
 }
 return thid;
}
int main()
{
 int x = 0;	
 pspDebugScreenInit();
 SetupCallbacks();
 initGraphics();
 sceDisplayWaitVblankStart();
 flipScreen();
 for (x = 0; x< TOTAL_PICTURES; x++)
 {
 ourImage[x] = loadImage(picts[x].fileName);
 }

 while (1)
 {
 clearScreen(0xff);
	
//<MAINLOOP>
 button = ProcessInputs();
 MoveBall();
 MoveOpponent();
 MovePlayer();
 UpdateScreen();

//</MAINLOOP>
 sceDisplayWaitVblankStart();
 flipScreen();
 if (button.Buttons & PSP_CTRL_TRIANGLE)
 {
 sceKernelSleepThread();
 return 0;
 break;
 }
 sceKernelDelayThread(10000);
 }
 sceKernelSleepThread();
 return 0;
}
SceCtrlData ProcessInputs()
{
 SceCtrlData pad;
 sceCtrlReadBufferPositive(&pad, 1);
 return pad;

}
void ClearCurrentScreen()
{
 clearScreen(0xff);
 sceDisplayWaitVblankStart();
 flipScreen();
}
void DisplayImage(struct Picture _pict)
{
 char buffer[128];
 int sizeX;
 int sizeY;
 int x = 0;
 int picIndex = 0;

 for (x = 0; x< TOTAL_PICTURES; x++)
 {
 if (strcmp(_pict.fileName, picts[x].fileName) == 0)
 {
 picIndex = x;
 }
 }

 if (0) //if the pic is not already in memory, load it
 {
 sprintf(buffer, "%s", _pict.fileName);
 clearScreen(0xff);
// ourImage = loadImage(buffer);
 }
 sizeX = _pict.right - _pict.left;
 sizeY = _pict.bottom - _pict.top;
 blitAlphaImageToScreen(0,0,sizeX,sizeY,ourImage[picIndex],
 _pict.left,_pict.top);
}
void HideImage(struct Picture _pict)
{
}

//<FUNCTIONS>

void MoveBall()
{
 if (ballVertDirection == 1)
 {
 picts[1].top = picts[1].top + 1;
 picts[1].bottom = picts[1].bottom + 1;
 }
 else
 {
 picts[1].top = picts[1].top - 1;
 picts[1].bottom = picts[1].bottom - 1;
 }
 if (ballHorizDirection == 1)
 {
 picts[1].left = picts[1].left + 1;
 picts[1].right = picts[1].right + 1;
 }
 else
 {
 picts[1].left = picts[1].left - 1;
 picts[1].right = picts[1].right - 1;
 }

 if (picts[1].left > 290)
 {
 ballHorizDirection = 0;
 }
 else if (picts[1].left < 10)
 {
 ballHorizDirection = 1;
 }
 if (picts[1].top < picts[2].top + 15 && picts[1].left > picts[2].left && picts[1].left < picts[2].left + 60)
 {
 ballVertDirection = 1;
 }
 else if (picts[1].top > picts[0].top && picts[1].left > picts[0].left && picts[1].left < picts[0].left + 60)
 {
 ballVertDirection = 0;

 if (button.Buttons & RIGHT)
 {
 ballHorizDirection = 1;
 }
 else if (button.Buttons & LEFT)
 {
 ballHorizDirection = 0;
 }
 }
 else if(picts[1].top > picts[0].top && (picts[1].left < picts[0].left || picts[1].left > picts[0].left + 60))
 {
 ballVertDirection = 1;
 picts[1].top = picts[2].top + 15 + 10;
 picts[1].bottom = picts[2].bottom + 15 + 10;
 }
 else if (picts[1].top < picts[2].top && (picts[1].left < picts[2].left || picts[1].left > picts[2].left + 60))
 {
 ballVertDirection = 0;
 picts[1].top = picts[0].top - 10;
 picts[1].bottom = picts[0].bottom - 10;
 }
}

void MoveOpponent()
{
 if (picts[2].left + 30 > picts[1].left)
 {
 picts[2].left = picts[2].left - oppMoveDelta;
 picts[2].right = picts[2].right - oppMoveDelta;
 }
 if (picts[2].left + 30 < picts[1].left)
 {
 picts[2].left = picts[2].left + oppMoveDelta;
 picts[2].right = picts[2].right + oppMoveDelta;
 }
}
void MovePlayer()
{
 if (button.Buttons & RIGHT)
 {
 picts[0].left = picts[0].left + moveDelta;
 picts[0].right = picts[0].right + moveDelta;
 }
 if (button.Buttons & LEFT)
 {
 picts[0].left = picts[0].left - moveDelta;
 picts[0].right = picts[0].right - moveDelta;
 }
}
void UpdateScreen()
{
 HideImage(picts[0]);
 HideImage(picts[1]);
 HideImage(picts[2]);

 DisplayImage(picts[0]);
 DisplayImage(picts[1]);
 DisplayImage(picts[2]);
}

//</FUNCTIONS>
//</FILE>
	2_2: Public Class Form1

 Inherits System.Windows.Forms.Form

 <System.Runtime.InteropServices.DllImport("user32.dll")> Private Shared _
 Function GetAsyncKeyState(ByVal key As Keys) As Integer
 End Function

#Region " Windows Form Designer generated code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Windows Form Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Form overrides dispose to clean up the component list.
 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 Friend WithEvents PictureBox1 As System.Windows.Forms.PictureBox
 Friend WithEvents PictureBox2 As System.Windows.Forms.PictureBox
 Friend WithEvents PictureBox3 As System.Windows.Forms.PictureBox
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 Dim resources As System.Resources.ResourceManager = New System.Resources.ResourceManager(GetType(Form1))
 '
 'Form1
 '
 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13)
 Me.ClientSize = New System.Drawing.Size(500, 300)
 Me.Name = "Form1"
 Me.Text = "Form1"
 Me.ResumeLayout(False)

 End Sub

#End Region
 Dim upPressed As Boolean = False
 Dim downPressed As Boolean = False
 Dim leftPressed As Boolean = False
 Dim rightPressed As Boolean = False

'<HEADER>
	Dim picts(100) as PictureBox
	Dim TOTAL_PICTURES as Int16 = 3

'<DECLARATIONS>
Dim ballVertDirection as Int16= 1
Dim ballHorizDirection as Int16= 1
Dim moveDelta as Int16= 10
Dim oppMoveDelta as Int16= 10

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
'<INITIALIZE>
	picts(0) = new PictureBox
	picts(0).Image = System.Drawing.Bitmap.FromFile("MyPaddle.png")
	picts(0).Top = 200
	picts(0).Left = 200
	picts(0).Show()
	picts(0).Height = 30
	picts(0).Width = 60
	Controls.Add(picts(0))

	picts(1) = new PictureBox
	picts(1).Image = System.Drawing.Bitmap.FromFile("ball.png")
	picts(1).Top = 100
	picts(1).Left = 200
	picts(1).Show()
	picts(1).Height = 5
	picts(1).Width = 5
	Controls.Add(picts(1))

	picts(2) = new PictureBox
	picts(2).Image = System.Drawing.Bitmap.FromFile("YourPaddle.png")
	picts(2).Top = 0
	picts(2).Left = 200
	picts(2).Show()
	picts(2).Height = 30
	picts(2).Width = 60
	Controls.Add(picts(2))
'</INITIALIZE>
' moveDelta = 5
' oppMoveDelta = 1
 Debug.WriteLine("Starting up")
 MyBase.KeyPreview = True
 MyBase.Show()
 Dim count As Int16 = 0
 While 1
 Application.DoEvents()
 count = count + 1
 If (count = 15000) Then
 count = 0

'<MAINLOOP>
ProcessInputs()
 MoveBall()
 MoveOpponent()
 MovePlayer()
 UpdateScreen()

'</MAINLOOP>
 End If
 End While

 End Sub
 Private Sub FormClosing(ByVal sender As System.Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles MyBase.Closing
 Application.Exit()
 End
 End Sub

 Private Sub ProcessInputs()

 upPressed = False
 downPressed = False
 leftPressed = False
 rightPressed = False

 If (GetAsyncKeyState(Keys.Up) <> 0) Then
 upPressed = True
 End If
 If (GetAsyncKeyState(Keys.Down) <> 0) Then
 downPressed = True
 End If
 If (GetAsyncKeyState(Keys.Left) <> 0) Then
 leftPressed = True
 End If
 If (GetAsyncKeyState(Keys.Right) <> 0) Then
 rightPressed = True
 End If
 End Sub

 Private Sub ClearScreen()
 Dim x As Int16
 For x = 0 To TOTAL_PICTURES - 1
 picts(x).Hide()
 Next

 End Sub

 Private Sub DisplayImage(ByVal _image As PictureBox)
 _image.Show()
 End Sub
 Private Sub HideImage(ByVal _image As PictureBox)
 _image.Hide()
 End Sub
'<FUNCTIONS>

Private Sub MoveBall()
 if (ballVertDirection = 1) Then
 picts(1).top = picts(1).top + 1
 Else
 picts(1).top = picts(1).top - 1
End If
 if (ballHorizDirection = 1) Then
 picts(1).left = picts(1).left + 1
 Else
 picts(1).left = picts(1).left - 1
End If

 if (picts(1).left > 290) Then
 ballHorizDirection = 0
 Else If (picts(1).left < 10)
 ballHorizDirection = 1
End If
 if (picts(1).top < picts(2).top + 15 and picts(1).left > picts(2).left and picts(1).left < picts(2).left + 60) Then
 ballVertDirection = 1
 Else If (picts(1).top > picts(0).top and picts(1).left > picts(0).left and picts(1).left < picts(0).left + 60)
 ballVertDirection = 0

 if (rightPressed = True) Then
 ballHorizDirection = 1
 Else If (leftPressed = True)
 ballHorizDirection = 0
End If
 Else If(picts(1).top > picts(0).top and (picts(1).left < picts(0).left or picts(1).left > picts(0).left + 60))
 ballVertDirection = 1
 picts(1).top = picts(2).top + 15 + 10
 Else If (picts(1).top < picts(2).top and (picts(1).left < picts(2).left or picts(1).left > picts(2).left + 60))
 ballVertDirection = 0
 picts(1).top = picts(0).top - 10
End If
End Sub

Private Sub MoveOpponent()
 if (picts(2).left + 30 > picts(1).left) Then
 picts(2).left = picts(2).left - oppMoveDelta
End If
 if (picts(2).left + 30 < picts(1).left) Then
 picts(2).left = picts(2).left + oppMoveDelta
End If
End Sub
Private Sub MovePlayer()
 if (rightPressed = True) Then
 picts(0).left = picts(0).left + moveDelta
End If
 if (leftPressed = True) Then
 picts(0).left = picts(0).left - moveDelta
End If
End Sub
Private Sub UpdateScreen()
 HideImage(picts(0))
 HideImage(picts(1))
 HideImage(picts(2))

 DisplayImage(picts(0))
 DisplayImage(picts(1))
 DisplayImage(picts(2))
End Sub

'</FUNCTIONS>
End Class

'</FILE>

