
Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI

37th ASEE/IEEE Frontiers in Education Conference

T1A-1

Game Teleporter: A Development Tool For Everyone

Tony Morelli and Dwight Egbert
Computer Science and Engineering Department University of Nevada Reno

morelli@cse.unr.edu, egbert@cse.unr.edu

Reno, Nevada 89577

Abstract

The Game Teleporter is an application that translates one

file format to another without any user intervention. The

application itself is made up of different combinations of

input plug-ins and output plug-ins. For example, the

application can take an Adobe Flash file as an input and

then output a Playstation Portable binary that can be run

on the specified target platform and have the same

functionality as the original Adobe Flash file. Flash is a file

format commonly used by web developers to create

animated and interactive websites. Using Flash as an input

opens up development to people who might have great

ideas for games, but cannot display them on the desired

target as they do not know how to write programs for it.

This tool is applicable at all levels of education. A very

simple input/output plug-in combination allows

elementary school children to create a game simply by

drawing pictures. This can enhance their interest in

learning computer programming. As shown in this paper,

students used this tool with a customized graphical input

plug-in to create a basic game that will run on both

Microsoft Windows and on a Sony Playstation Portable.

College students can also utilize this application by

creating and modifying the plug-ins to adapt to whatever

the current technology requires. This paper lays out how

the Game Teleporter functions, and how it can be used in

education at all levels to generate better computer

programmers for the future.

Index Terms – Game Development, Multiple Platforms, Open

Source, Playstation Portable.

INTRODUCTION

Having students starting to get interested in software at the

earliest of ages benefits the entire software industry. The

Game Teleporter tool encourages young students to begin

thinking about writing software as a potential career at a

young age. The input/output plug-in architecture allows for

simple input files to create complex output applications. As

shown in this document, a simple drawing can be used to

create an interactive application running on a target platform

of interest to young students. In this example, a drawing

created in Adobe Photoshop is used as an input, and as an

output it is displayed on a Playstation Portable. The user

needs to do nothing besides draw the picture, and click a

button on the user interface. All the code generation is done

without any user interaction. Getting an application up and

running on an entertainment device used by the child should

promote an interest in the software field.

 Also, this tool can be used by advanced students to

develop plug-ins that revolve around the newest of

technologies. A developer can create or modify plug-ins in

order to generate complex applications on multiple target

platforms with a simple input format that can be generated by

everyone. Input plug-ins can also be made to decipher

complex file formats such as a binary file from a specific

target platform.

 This project will get the attention of a young

perspective programmer and allow that person to stay with this

project all the way up to becoming an advanced developer.

This tool will allow developers to grow with technologies and

skills while working within the same product that is very

familiar to the budding programmer. This paper shows a

specific example of one input plug-in and one output plug-in,

however the tool itself was crafted in such a way that adding

or modifying plug-ins can be easily done. The application

was created using Microsoft’s Visual Studio .net in the C++

programming language, and built to run on the Microsoft

Windows XP operating system, however the code is intended

to be portable in such a way that the application can be built

and run on any platform with a C++ compiler. All

components of the Game Teleporter are open source and

available on the Game Teleporter website. The open source

nature will promote learning be examining the source code,

and improve the overall quality of the product by making it

available for modification by anyone.

SIMILAR SOFTWARE

This product is comparable to a few different products. The

first product is a code converter. There are several available

on the web, and they work to varying degrees of success.

Most of them convert C# to VB.Net, which is a fairly straight

forward process as the languages are very similar. Most of

these converters did a pretty poor job of converting, and I

never was able to get one translated piece of code to actually

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI

37th ASEE/IEEE Frontiers in Education Conference

T1A-2

generate an application of similar functionality. Also, all these

converters were basically converting to the same platform.

They were not creating binaries for different targets. So in

that respect, the Game Teleporter works better than the code

converters and has more practical applications.

The next product this is similar to is a game

development kit for beginners. One in particular is entitled

‘The Game Makers Apprentice’. This book and companion

development environment CD are geared towards someone

just learning the basics of game design. Most of the book

deals with sprites and assigning events and actions to the

sprites. This is a really good way to teach concepts to budding

young programmers. Near the end of the book the author

introduces the concept of GML, the Game Maker Language.

This is a basic scripting language that the author uses to teach

such programming basics as FOR loops and IF statements.

Once the game is created it can only be run on a windows PC.

It does teach the necessary elements of programming, but it

also misses out on catching a child’s interest by showing a

game running on a different target (such as a PSP). I think

this product makes a great companion to the Game Teleporter.

An input plugin could be created to take the Game Maker

source, and convert it to a game that could be run on a PSP

with the simple click of one button. This will also make use

of the nice environment of the Game Maker. The simple input

plugin for the pong game used for this paper will only be of

interest to a certain type of person, where as using the Game

Maker will help more with getting a beginner introduced to

basic programming concepts.

Another program, Game Editor, allows the exporting

to a few different platforms such as the PocketPC, however

the overall quality of the product is not as good as Game

Maker and you are limited to using the Game Editor

environment to create the game. The Game Teleporter has the

best of all worlds. With the plug-in architecture, and the open

source nature of the product any and all plug-in combinations

are possible. You will be able to use the development

environment of your choice and play the game on the target of

your choice. You will also have all the converted source code

for each target platform specified which will make learning

about that target much easier.

STUDY

A study was conducted to determine how useful this product is

for educational purposes. The study consisted of 18

individuals ranging in ages from 13-50, and skills ranging

from no computer programming interest, to computer gamer,

to seasoned software engineer. The study began with me

explaining what the product does, followed by showing the

participant the final product they were about to create, which

ended up being a simple Pong type of a game. I then ran the

input plug-in, which in this case was an interface allowing the

user to draw their own characters that would be used in the

game. The characters were (1) Your Paddle, (2) Opponent

Paddle, and (3) the ball. The software was run, and the

student drew the desired components on a tablet PC using the

stylus as a method of drawing. The student simply had to

draw on the screen as if holding a pen. Once the drawings had

been completed, the Game Teleporter generated all source

code to create a Visual Basic Program and a Playstation

Portable game, then the Teleporter built the programs for each

target. I then started up the Visual Basic application and let

the student play the game. Next, I started up the application

on the Playstation Portable and again let the student play the

game. I then asked the students a series of questions about

what had just taken place.

FIGURE 1 USER INTERFACE

(1) Did they think it would be that easy to create a game?

(2) Was the game interesting?

(3) Which game did they like better, the Psp or the Visual

Basic?

(4) Did using this application make them want to be a

computer programmer?

(5) Did they have any questions?

The results were mixed. I was so excited about this product,

that I assumed everyone would immediately want to become a

computer programmer. That was not the response I received.

Everyone did not think it would be that easy to make a game

run on a Psp. The non programmers were also impressed with

the ability to make a PC game that quickly.

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI

37th ASEE/IEEE Frontiers in Education Conference

T1A-3

FIGURE 2: SAMPLE VISUAL BASIC.NET GAME

The most common response to ‘Was the game

interesting?’ was that it would be more interesting if the game

kept score. Younger gamers wanted to know how to beat the

game. The basic game had no scoring mechanism, just simply

pong. If you wanted to keep score you would have to use a

pencil and paper. Seasoned engineers did not care whether or

not the game was interesting as they were more interested in

how the process took place.

The survey of the Psp version or the Visual Basic

Version was split evenly amongst the age groups. The older

group (college age and above) were much more interested in

the Visual Basic program as they could use it on their own PC.

The younger group was more interested in the Psp version.

This was due to the ‘cool factor’ of Sony’s portable. Although

none of the kids in the survey owned a Psp, they all knew

someone who did, and the kids in the survey always spoke of

the Psp owner as the ‘cool kid’. I think the children were

more interested in the Psp version because if they could make

a game that could run on the cool kid’s toy, they too would be

cool.

When I asked if using this application made them

want to become a computer programmer, I received mixed

results. This question was only asked to the non programmers

in the study. I could have predicted the answer to this

question within the first 2 minutes of starting the study with

each individual. Either the person was already interested in

programming or not. At first I considered this a failure on my

part as the goal of this was to get kids interested in

programming.

The initial failure of the previous question proved to

be incorrect as I interviewed more and more people about the

product. The longest part of the survey was always the last

question. The engineers wanted to know in detail how

everything worked. How the intermediate code was

generated, how the code was compiled, and how did I get my

own application to run on the Psp. The non engineers who

wanted to be programmers would ask questions about how to

write programs, and I would walk them through some of the

code showing them how each line could make a difference in

the final product. If the student was interested in learning the

basics of computer programming, I also showed them the

QBasic program that was also output. This has all the source

code in one file and made it easier for the student to see how

the program flowed. It also pointed out the limitations of the

basic language as QBasic only supports lower video

resolutions which made the graphics look blocky. Overall,

however, the QBasic source code served its purpose as it is

much easier to understand than the Psp source code that was

generated. Some kids were interested in programming but did

not have the most basic computer skills, so their questions

revolved around moving files from the computer to the Psp.

Some asked why the same file could not be run on both the PC

and on the Psp.

The group I feared the most when I asked the last

question was the non-programmers of the group. I figured

since this product did not make them want to be programmers,

I would be met with blank stares. Fortunately, that was not

the case. This group had the most suggestions about how to

make things better. They suggested a better drawing interface

with the ability to move in pictures from outside sources.

They wanted a scoring system in the game so it would be

more fun and more challenging to play. They wanted to add

sounds. One child made the comment that if everyone was

drawing their own character the quality of the game would be

diminished because not everyone could draw. The overall

game would be better if each person playing the game could

create content that they specialized in.

The comments from the last question were the best

for this product. Even though this product did not make

programmers out of everyone, it made everyone think about

how to make things better. And more importantly what role

each individual could have in making things better. Not

everyone is interested in programming, and not everyone is

interested in drawing, however everyone surveyed found some

talent of their own that they wanted to use to make this

product better. That is exactly how a development team

works. Making a game consists of story writers,

programmers, graphic artists, audio creators and more. At the

very least this product makes anyone think about what role

they could play in a future game development team.

METHODOLOGY

The Game Teleporter is made up of 3 basic modules, Input

Plug-ins, Output plug-ins, and an intermediate state. The

basic flow of the software is as follows. In stage 1 the input

plug-in creates an intermediate set of files. In stage 2, the

output plug-in uses the intermediate set of files to create the

desired output. Having a standard intermediate file set format

makes it possible to convert from any one file type to any

other file type. All input plug-ins must have the capability of

going from the input file, or set of files, to the known

intermediate state. The output plug-ins all must support

starting from a common intermediate set of files and translate

them to the desired output. The following sections describe

the process the application takes to convert a Photoshop (Psd)

file into a Playstation Portable binary object that can be run on

the Playstation Portable gaming system. Although these

descriptions are specific to the Psd input plug-in and the Psp

output plug-in, the methodologies used can be applied to

create new input and/or output plug-ins.

Input Plug-ins

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI

37th ASEE/IEEE Frontiers in Education Conference

T1A-4

As described earlier, input plug-ins must support converting

any files, or set of files into an intermediate set of files. These

files are grouped into two areas, source code and resources.

The source code contains commands in a simple language

similar to the C programming language. Currently, the only

resources supported are images stored in the Portable Network

Graphics (Png) format. Other resources that can be added at a

later date include sounds, 3 Dimensional Graphics, and other

data files.

 The Photoshop input plug-in is designed to create a

slide show of images that are contained within a Photoshop

file. Adobe Photoshop has support for multiple layers. A

layer is similar to a page in a notebook made up of transparent

paper. A drawing exists on each page of the note book, and

when laid on top of each other it is possible to see all images

at once. That is what is seen when the Photoshop document is

first opened. The Photoshop Plug-in’s function is to take the

different layers (pages in the notebook), break them out into

separate images, and then generate code to display them one at

a time keeping the location of the images the same as where

they were in the original Photoshop file.

 To achieve this goal, an open source tool was

utilized. Imagemagick is an open source and freely distributed

graphics package which contains several utilities to

manipulate graphics. Although it is very possible to write

complete software solutions not using open source products,

they are very useful and it avoids re-inventing the wheel for

known problems. In the first stage of the Psd conversion

process, the Imagemagick utility convert is ran on the Psd file.

When convert is run on a Psd file, the output of the command

is one Png file for every layer contained within the file. This

is a very important step to have automatically taken care of by

an outside utility, however the convert utility is missing two

important pieces of information. It is missing the location of

the image within the layer, and it is also missing the name of

the layer. The position within the file is needed to properly

display the image, and the layer name is needed for potential

key word usage later if the Psd plug-in is desired to do more

than a simple slide show.

 To obtain the two missing pieces of data, the position

of each layer, and the layer name, the Game Teleporter was

written to get these pieces directly out of the Psd file itself.

The Psd plug-in is a stripped down version of the Adobe

Photoshop 6.0 File Formats Specification. It is only

concerned with the name of each layer and the location of

each layer. Nothing more. The plug-in will display all sorts

of information about the file and about each layer, however

that information is simply displayed and not saved for later

use. The plug-in can be modified in such a way that available

and not currently stored data can be stored, but that is not

necessary for the purpose of this plug-in.**** The code was

written to follow the spec and upon completion of processing

all data within the Psd file, the plug-in is aware of layer

names, and the corresponding bounds which include the

coordinates of the Top Left corner, and the Bottom Right

corner of the graphic contained on each layer.****

 Knowing the layer names, the plug-in then makes

modifications to the Png files created by the convert program

earlier. The convert program knows nothing about layer

names, so it names the files according to the layer number.

The output is a number followed by .png (i.e. 1.png, 2.png,

3.png, etc…). This is somewhat not useful, but fortunately the

layers are processed in the same order by the Game

Teleporter. So the Psd plug-in can simply rename each file

based on an index into an array of filenames generate by the

psd plug-in when it read the file earlier. At this point, the

input plug-in has created the resources necessary for the

intermediate stage and copies them to an intermediate

directory. The final step of the input plug-in stage is to

generate the source code needed for an output plug-in to create

the desired output.

 The Psd input plug-in creates two source code files.

The first file created is named Pictures.h and contains a known

structure for pictures. The information stored within that file

contains the path name of the image resources, and their

associated bounds. A sample Pictures.h file is shown below:

/*****************************/

static struct Picture picts[] = {

 {"Green_Box.png",1,1,34,45},

 {"Red_Box.png",0,432,35,479},

 {"Blue_Box.png",224,0,265,51},

 {"Yellow_Box.png",226,427,270,478}

 };

#define TOTAL_PICTURES 4

/*****************************/

FIGURE 3: PICTURES.H

The above code is generated at runtime by the Psd plug-in and

includes all relevant information including the total number of

pictures.

 The second piece of code generated by the Psd Input

Plug-in is the code that describes the necessity for displaying

the slide show. This code is formatted in a C like syntax in

order for ease of conversion for most out put plug-ins. Most

platforms support some kind of C compiler, so that is why that

format was chosen. The main code piece not only contains

commands, but it also contains XML markers designating

different sections of the code. The xml tags generated by the

Psd Plug-in include, Includes, Declarations, and Mainloop.

The includes section is designed to describe any external files

created by the plug-in, which in this case is Pictures.h. The

Declarations section is much like a declaration section in a C

program where it outlines what variables are about to be used.

The mainloop is a section which contains the actual

commands to generate the desired output. A sample output of

the Psd Plug-in code generation is shown below:

/*******************************/

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI

37th ASEE/IEEE Frontiers in Education Conference

T1A-5

<INCLUDES>

#include "Pictures.h"

</INCLUDES>

<DECLARATIONS>

int picIndex = 0;

InputButton button;

</DECLARATIONS>

<MAINLOOP>

 GetInput();

 if (button & RIGHT)

 {

 ClearScreen();

 picIndex++;

 if (picIndex >= TOTAL_PICTURES)

 {

 picIndex = 0;

 }

 DisplayImage(picts[picIndex]);

 }

 if (button & LEFT)

 {

 ClearScreen();

 picIndex--;

 if (picIndex < 0)

 {

 picIndex = TOTAL_PICTURES-1;

 }

 DisplayImage(picts[picIndex]);

 }

</MAINLOOP>

/*******************************/

FIGURE 4: INTERMEDIATE CODE SAMPLE

A quick run through of the code shows that our main loop

calls a function GetInput which is then assumed to place

whatever buttons are pressed in a variable labeled button.

Then based on what button is pressed (either right or left), the

screen is cleared and the next image is displayed. This keeps

going on forever. This is a pretty simple state machine, and it

will be shown later how this simple code is turned into

Playstation Portable Code.

Output Plug-ins

 Output plug-ins are designed to utilize the code and

resources generated by the input plug-in to create a desired

result. The plug-in discussed here is a Playstation Portable

plug-in, but the concepts discussed here can be used to create

plug-ins for different platforms.

 The Psp Output Plug-in begins with a skeleton set of

files which act as a starting point for a Psp Project. These are

grouped into two categories, Necessary Files, and Modifiable

files. The Necessary Files are files necessary to build a Psp

Executable, and are not able to be modified by the Psp plug-in.

These files are simply copied into every project directory. The

other set of files, the Modifiable Files, are files necessary to

build a Psp Binary, however these need to be modified based

on the output of the input plug-in.

 The two files being modified are Makefile, and

main.c. The changes to Makefile are extremely basic. The

Makefile contains two identifiers for each Psp Project, Target

and Title. The Target defines the executable name and shall

not contain any spaces. The Title is what appears as the title

on the Playstation Portable Game Selection Screen and may

contain spaces. Both of these configuration options are

entered on the command line when the application is started

and inserted into the file when the Psp Output Plug-in is run.

 The second and most complicated modifiable file in

the Psp output plug-in is main.c. The skeleton main.c file

contains all the include files, functions, and definitions

required for all Psp applications. It also includes keywords

such that the Psp Output Plug-in can insert the necessary code

at the correct places within the file. The file contains XML

tags for Includes, Declarations, and the MainLoop. Since this

plug-in is creating an application to be built by a C compiler,

the plug-in can simply copy in all includes defined in the

intermediate code file. They will be a direct drop in. The

same goes for the declarations with one exception. The

variables are declared in the same fashion as in the

intermediate code, however the Psp Output Plug-in must

maintain an internal list of variables for use which will be

described later in this document. The variable types supported

by this plug-in are an Integer and a Button type.

 After the declarations, the MainLoop tag is

encountered and the guts of the code are added from the

intermediate code generated by the input plug-in. The Psp

plug-in reads through the intermediate code and makes

modifications as necessary. For example, any time the

intermediate code makes a call to GetInput(), the Psp plug-in

makes a call to ProcessInputs, and stores the results into its

variable that has been declared as a button. In this case, the

variable name is button. Another substitution deals with the

use of the variable. Whenever the intermediate code checks

the value of button, the Psp output plug-in generates code

looking at the value of button.buttons as that is the naming

convention for buttons in the Psp world. The intermediate

code generated by the input plug-in as shown above is

translated into the following code which is understood by the

Playstation Portable compiler.

/***************************/

 button = ProcessInputs();

 if (button.Buttons & RIGHT)

 {

 ClearCurrentScreen();

 picIndex++;

 if (picIndex >= TOTAL_PICTURES)

 {

 picIndex = 0;

Session T1A

1-4244-1084-3/07/$25.00 ©2007 IEEE October 10 – 13, 2007, Milwaukee, WI

37th ASEE/IEEE Frontiers in Education Conference

T1A-6

 }

 DisplayImage(picts[picIndex]);

 }

 if (button.Buttons & LEFT)

 {

 ClearCurrentScreen();

 picIndex--;

 if (picIndex < 0)

 {

 picIndex = TOTAL_PICTURES-1;

 }

 DisplayImage(picts[picIndex]);

 }

/***************************/

FIGURE 5: PSP OUTPUT PLUG-IN GENERATE CODE

As shown above the code translates pretty easily into Psp

native code, but also illustrates why a C compiler cannot be

relied upon to do all conversions.

 With all the code in place, the plug-in then copies all

resources into the destination directory. This sets the game up

to be built. One last modification needs to be made prior to

building the game. A build script is generated which contains

the name and directory of where the source files will be

placed. A batch file is then run which will enter the build

environment and build the Playstation Portable Binary image.

 When the newly created application is run on the

actual hardware, a slideshow is presented to the user. The

slideshow cycles through all the layers originally drawn within

the Photoshop file and displays them in their original location.

This simple example illustrates the power of this tool. From a

Psd file, to running on real hardware in less than 1 minute is

something not shy of amazing.

 This software was designed to be run completely

from the command line as it will enable people to use the

utility in scripts that will automatically generate a desired

output. This, however, is not the best approach for people

who are using this tool as a development kit for non

programmers. These people may be intimidated by the

requirement of using a command prompt. A front end for the

command prompt, GT Front End, was created. This utility

allows the user to input all required command line options,

such as the input and output files, and the output file names

into a Graphical User Interface (GUI) which is in a windowed

environment that the user is very comfortable using. This will

promote the use of this tool by people who are not completely

computer savvy.

CONCLUSION

 This paper has demonstrated how the application can

translate one file format into another. It shows how easy new

plug-ins can be created for either a new input or a new output

format. The application was designed with the intention of it

to be used by everyone at all programming skill levels. A

younger student who desires to create a game can do so by

simply drawing pictures and running it through the proper

plug-ins. A higher level student can write more plug-ins, or

modify the existing ones to demonstrate programming

abilities, or to learn new ones. This broad range of users and

uses makes this tool a great part of the education process. The

ease of adding new plug-ins will keep students very interested,

as well as allowing this piece of software to evolve with time.

References:

[1] Game Teleporter Website.

http://www.tonymorelli.com/gtp/

[2] Adobe Photoshop 6.0 File Formats Specification Version

6.0 Release 2 November 2000. Copyright 1991-2000 Adobe

Systems Incorporated

[3] Macromedia Flash (SWF) and Flash Video (FLV) File

Format Specification Version 8 Copyright 2005 Adobe

Systems Incorporated

[4] ImageMagick , http://www.imagemagick.org

[5] Greg Perry (1993) QBASIC By Example. Que Publishing

[6] Habgood and Overmars (2006) Game Maker. APress

[7] Watrall and Herber (2004) Flash MX 2004. Savvy

