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Abstract 

     This paper describes a method of 

learning to play Tic Tac Toe.  The 

strategy for Tic Tac Toe is derived from 

a neural network with parameters 

evolved by a genetic algorithm.  The 

neural network consisted of the board 

positions as inputs and a score as an 

output with two hidden layers.  The 

score was then used to evaluate potential 

board positions with a minimax 

algorithm making the actual move 

decisions.  Two different experiments 

were performed:  the first experiment 

involved evolving the neural network 

parameters against a known good 

opponent, the second experiment used 

co-evolution of neural network 

parameters with 2 separate populations.  

Each member of one population played 

games against the top 5 members of the 

other population.  Fitness was recorded, 

and cross over and mutation took place 

as necessary.  To actually evaluate how 

well the two populations were evolving 

against each other, after each 

generation, all members of the 

population were run against the known 

good opponent to determine how good 

the player actually was.  Although the 

average player was never able to beat or 

tie the known good opponent, the results 

are promising that with a few tweaks 

that can happen. 

Introduction 

     The game of Tic Tac Toe is played 

on a 3 by 3 grid.  One player marks his 

spots with an X, and the other marks 

with an O.  The players alternate placing 

marks on the grid with the hopes of 

winning the game.  The winner of the 

game is the first player to place 3 of his 

marks in a row.  If the entire grid is 

filled with marks, and there is no winner, 

the game is determined to be a draw.  

This project created a player to play the 

game without any existing knowledge of 

Tic Tac Toe strategy.  The only rule that 

was known to the evolving player was 

that the players alternated turns, and 

when it was the evolving player’s turn, it 

could only place a mark on an empty 

spot in the grid.  To create an artificially 

intelligent player, three AI (Artificial 

Intelligence) techniques were used.  

They were the minimax algorithm, 

artificial neural networks, and genetic 

algorithms. 

     The MiniMax Algorithm is a search 

method applicable in 2 player turn based 

games.  These games have all future 



moves readily available to the opponent.  

Games such as Tic Tac Toe, Checkers, 

and Chess are examples of games in 

which the MiniMax algorithm is useful.  

The way the algorithm works, is that 1 

player is the maximizer, and the other 

player is the minimizer.  The object of 

the maxizer is to maximize his potential 

score by anticipating the minimizer is 

going to minimize his score.  In this 

method, the maximizer will place a 

token in every available space, then play 

all of the newly created boards as the 

minimizer, and so on.  Each look ahead 

is considered a ply.  The more ply, the 

more accurate the player will be as the 

player can ‘see’ more into the future of 

possible board positions.  In order to use 

the MiniMax Algorithm, each board 

state must be able to be assigned a value.  

For example, if X is the maximizer a 

board position that shows 3 x’s in a row 

would receive a very high score.  If O is 

the minimizer a board position that 

shows 3 o’s in a row would receive a 

very low score. 

     Artificial Neural Networks are a 

simulation of real neural networks 

located in our nervous systems.  The 

neurons in the nervous system contain 3 

parts, the cell body, the dendrites (input), 

and the axon (output).  The axons of one 

neuron are connected to any number of 

dendrites of other neurons.  The neuron 

will take all of its inputs, and analyze 

them, and if they meet certain 

requirements, it will send pulses out its 

output.  An Artificial Neural Network 

works on the same idea.  The nodes in a 

neural network contain any number of 

inputs and outputs.  Each node has a 

threshold, which means if the sum of all 

its inputs goes beyond the threshold, it 

will turn on its outputs.  Each output of a 

node has an associated weight with it.  

This weight is multiplied by the output 

value before it is added in the 

summation of the inputs of the next 

node.   

     Genetic Algorithms are a method of 

evolving data to find the best solution to 

a problem. They are inspired by 

Darwin's theory of evolution. The 

solution to a problem is evolved by 

keeping the best parts of one solution, 

and combining them with the best parts 

of another solution. Just like in nature, a 

genetic algorithm has generations. Inside 

of a generation is a population of 

potential solutions to a problem. The 

population of the next generation is 

created by mating two members of the 

current population. Just like in nature, an 

offspring has characteristics of both of 



its parents. If a member of the 

population is a good solution to the 

problem (has a high fitness) there is a 

higher chance it will be chosen to be a 

parent. Through this process, new 

potential solutions are created. After a 

certain number of generations, the 

average fitness starts to approach the 

maximum fitness, and at this point, the 

maximum fitness is selected as the 

solution to the problem.  

     There has been a lot of work 

involving neural networks and genetic 

algorithms.  This project is most similar 

to a method described in David Fogel's 

Blondie24.  In this book he uses evolved 

neural networks to co-evolve a checkers 

player that utilizes the minimax search 

algorithm to make move decisions.  A 

similar method is used here to co-evolve 

a tic tac toe player. 

      The results of these experiments are 

promising.  The neural net players were 

evaluated against the perfect player, and 

after some time, they had a player that 

could tie the best player.  The average 

evolved player was not playing the 

perfect player to a draw all the time, but 

there were members of the population 

who were.  Letting the GA run for more 

generations could have changed this. 

     The rest of this paper will be setup as 

follows. The first part will go over how 

the experiment was setup. How the 

genetic algorithm was used, how the 

neural net was created, how the perfect 

player was utilized, and what data was 

used will be described in detail. The 

second part will display the results 

generated from the experiments. And 

finally, some conclusions will be made 

as well as a brief discussion on future 

work. 

Methodology 

     This project utilized the MiniMax 

Algorithm, Neural Networks, and 

Genetic Algorithms to create a Tic Tac 

Toe player.  How each of the three were 

individually used is described below, 

followed by how they all interacted with 

each other. 

     The MiniMax Algorithm is a search 

algorithm used to determine the best 

move in a 2 player turn based game 

where each player knows all of his 

opponents potential moves.  The more 

moves (ply) a player can look into the 

future, the better prepared the player will 

be to make a more accurate decision.  In 

this experiment, the number of ply for 

each player to look ahead was 

configurable in a configuration file.  I 

tested ply from 1 to 4, with 4 being the 



optimum for a tic tac toe game.  To 

evolve players, I used a static evaluator 

which is known to be ‘unbeatable’.  This 

evaluator returns a score of a board 

given the location of the x marks and the 

o marks.  It was also used to determine 

the quality of the 2 populations that were 

evolving against each other in my 

second experiment.  The static evaluator 

looked at all the pieces on the grid.  It 

counted wins as +30 (if x won) or -30 (if 

o won), almost wins (2 in a row with a 

potential for a win) as +20 or -20, and 

blocks (2 in a row with the other token 

blocking the win) as +10 or -10.  so if 

the ply was set to 4, the x player would 

generate all combinations 4 ply into the 

future, evaluate all boards at that level 

using the static evaluator, and then use 

the minimax algorithm to ultimately 

make the correct decision as to which 

way to go.  The evolving populations of 

neural networks were used as a neural 

network evaluator as opposed to the 

static evaluator.  The specifics of the 

neural net are laid out below, but 

basically the neural net was used to 

return a value for each potential board 

layout, returning a high score for board 

that x would like (the maximizer) and a 

lower score for a board that o would like 

(minimizer). 

    The neural network used in these 

experiments is used to evaluate board 

layouts.  Each board has an associated 

score for it generated by the neural net.  

This value is then used by the minimax 

algorithm to make the correct decisions.  

The neural net has 9 inputs, which 

correspond to the nine spaces on a tic tac 

toe board.  The inputs are a 1 if there is 

an X in that location, a -1 if there is an O 

in that location and a 0 if that location is 

empty.  The neural net used here has 2 

hidden layers, with 1 output.  The output 

is the score of that particular board.  The 

hidden layers consist of 18 nodes in the 

first layer followed by 5 nodes in the 

second layer.  All 9 inputs are wired to 

all 18 nodes in the first hidden layer, and 

all 18 nodes in the first hidden layer are 

wired to the 5 nodes in the second layer.  

The weights and thresholds varied from -

8 to 8, and were determined by the 

genetic algorithm.  The overall structure 

of the net remained constant, but the 

values of the thresholds and weights 

were evolved. 

     The genetic algorithm was used to 

evolve the weights and thresholds inside 

of the neural network.  The GA used a 

crossover rate of 0.667 with roulette 

wheel selection and a mutation rate of 

0.001.  The GA was run for 100 



generations and the data was averaged 

over 5 trials.  The population size was 

set to 100.  Each member of the 

population had a chromosome length of 

590 bits.  This was for the 95 weights 

and 23 thresholds in the neural net.  

Each value was allotted 5 bits.  The 

value for each of the parameters was 

created as follows.  The 5 bits were 

converted to an integer, then divided by 

2.  That number was then added to -8 to 

come up with that particular value. 

     All three of these AI components 

were interconnected to create a tic tac 

toe player. Two experiments were 

performed.  One involving 1 neural net 

evolving against a known good player, 

and the other involving 2 neural 

networks evolving against each other 

with the static evaluator being used as a 

benchmark.  In the first experiment, the 

GA would chose settings for the neural 

network and then create the network.  

That network would be passed into a tic 

tac toe game, where a game would be 

played against the known good static 

evaluator.  Once a winner was 

determined, the tic tac toe game would 

evaluate the final board positions and 

return a value of that board.  The GA 

would then use that value to perform 

roulette wheel crossover and mutation, if 

needed, on the entire population.   In the 

second experiment, the GA maintained 2 

sets of populations and put them head to 

head in a tic tac toe game.  Each member 

of a population would play the top five 

of the other population and the total 

score would be totaled and used for the 

roulette wheel crossover.  In order to 

determine how the population was 

evolving, each member of each 

population played the known good static 

evaluator.  These runs were only used to 

evaluate the members in the population 

against a known point.  All decisions for 

crossover were based on their scores in 

head to head competition. 

Results 

     The initial results from these 

experiments are promising.  In the first 

experiment (1 evolving neural net vs a 

known good opponent), two different 

configurations of the program were run.  

The first configuration set the ply for 

both players at 4.  The GA was run for 

100 generations, and the results were 

averaged over 5 trials with different 

initiating seeds.  The fitness range was 

expected to be between 0 and 480, with 

480 meaning the neural net won every 

game, and 0 meaning the static evaluator 

won every game.  A score of 240 meant 

every game was a draw.  Prior to 



running the experiment at 4 ply, I 

expected the GA to produce a player that 

would achieve a score of 240.  Since 

there was no way to beat the static 

evaluator at 4 ply, the best I could expect 

the neural net to do was to draw.  And 

thats exactly what happened.  After 100 

generations, there was always someone 

who consistently scored a fitness of 240.  

The average fitness of everyone in the 

population was 181.3.  That means the 

average neural net would lose some time 

against the static evaluator. 

     A second experiment was performed 

which was set up the same was as the 

previous, except for one small change.  

The static evaluator, which was known 

to be perfect at 4 play, was set to only 

look ahead 1 move (1 ply).  That was the 

only change that was made, and the GA 

was once again run to create and 

evaluate neural networks.  I expected the 

neural networks to have a much higher 

fitness.  The results were at first 

somewhat surprising.  After 100 

generations, the optima had flattened out 

at 190.  This means that no neural net 

had been evolved that could draw or beat 

the static evaluator at 1 ply, even when 

the neural net was configured for 4 ply.  

Thinking about why this happened, I 

have come up with the following theory.  

You are only as good as your opponent.  

And since the network was attempting to 

learn to play tic tac toe against someone 

who basically did not know what he was 

doing, the neural net learned to make the 

same bad decisions. 

     In the second part of this project, the 

GA maintained 2 separate populations of 

neural network parameters, and played 

the top performers from one population 

against all the other members of the 

other population.  The quality of the 

neural networks being created was 

monitored by having each member of 

each population play the static evaluator 

to a ply of 4 to see how good they really 

were.  I expected to see results very 

similar to the first experiment where 

members of the population would start to 

achieve a score of 240, meaning they 

were playing the perfect player to a 

draw.  After 100 generations, the optima 

had flattened out at 240 for each of the 

populations, which showed that they 

both had evolved players who could play 

the known perfect player to a draw every 

time.  The average player for each 

population was at 179.1.  This again 

means that the average player in the 

population was not as good as the known 

perfect player, but each population did 

have members who could play the 



perfect player to a draw.  The similarity 

between the co-evolved results and the 

single evolving neural net show that the 

co-evolution was working, although it 

did not produce results that were any 

better than evolving against a known 

good player.  The benefit is that if a 

known good player is not available, or 

not definable, the co-evolution process 

will produce members who are good 

players. 

Conclusions/Future Work 

     The results show that co evolution 

can produce as accomplished of a tic tac 

toe player as evolving a single 

population against a known perfect 

player.  I was a little surprised that the 

average player in the population ended 

up being as bad as they did, but I think 

changing the GA to use rank selection, 

as well as utilizing elitism could have 

bumped up the average.   

     To continue this project, I would like 

to take the knowledge obtained here and 

use it in non-turn based games.  I think 

using a GA with a neural net should 

yield good results if the GA and the 

neural net are structured correctly.  The 

other interesting part which needs 

further investigation, is the creation of 

the neural net itself.  My neural net 

layout was based on quite a bit of 

different neural net layouts that have 

been created in the past.  There was no 

designing this neural net to be specific 

for a tic tac toe game.  It would be 

interesting to use a genetic algorithm to 

create neural network layouts and then to 

use another GA to populate the weights 

and thresholds.  This would be a GA 

within a GA.  Besides taking up a lot of 

CPU power, this should result in the 

perfect neural net overall layout, as well 

as the perfect weights and thresholds for 

that neural network. 
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