

Tony Morelli

05/06/2005

Using Co-Evolution and Neural Networks to Generate a Tic Tac Toe Player

Abstract

 This paper describes a method of

learning to play Tic Tac Toe. The

strategy for Tic Tac Toe is derived from

a neural network with parameters

evolved by a genetic algorithm. The

neural network consisted of the board

positions as inputs and a score as an

output with two hidden layers. The

score was then used to evaluate potential

board positions with a minimax

algorithm making the actual move

decisions. Two different experiments

were performed: the first experiment

involved evolving the neural network

parameters against a known good

opponent, the second experiment used

co-evolution of neural network

parameters with 2 separate populations.

Each member of one population played

games against the top 5 members of the

other population. Fitness was recorded,

and cross over and mutation took place

as necessary. To actually evaluate how

well the two populations were evolving

against each other, after each

generation, all members of the

population were run against the known

good opponent to determine how good

the player actually was. Although the

average player was never able to beat or

tie the known good opponent, the results

are promising that with a few tweaks

that can happen.

Introduction

 The game of Tic Tac Toe is played

on a 3 by 3 grid. One player marks his

spots with an X, and the other marks

with an O. The players alternate placing

marks on the grid with the hopes of

winning the game. The winner of the

game is the first player to place 3 of his

marks in a row. If the entire grid is

filled with marks, and there is no winner,

the game is determined to be a draw.

This project created a player to play the

game without any existing knowledge of

Tic Tac Toe strategy. The only rule that

was known to the evolving player was

that the players alternated turns, and

when it was the evolving player’s turn, it

could only place a mark on an empty

spot in the grid. To create an artificially

intelligent player, three AI (Artificial

Intelligence) techniques were used.

They were the minimax algorithm,

artificial neural networks, and genetic

algorithms.

 The MiniMax Algorithm is a search

method applicable in 2 player turn based

games. These games have all future

moves readily available to the opponent.

Games such as Tic Tac Toe, Checkers,

and Chess are examples of games in

which the MiniMax algorithm is useful.

The way the algorithm works, is that 1

player is the maximizer, and the other

player is the minimizer. The object of

the maxizer is to maximize his potential

score by anticipating the minimizer is

going to minimize his score. In this

method, the maximizer will place a

token in every available space, then play

all of the newly created boards as the

minimizer, and so on. Each look ahead

is considered a ply. The more ply, the

more accurate the player will be as the

player can ‘see’ more into the future of

possible board positions. In order to use

the MiniMax Algorithm, each board

state must be able to be assigned a value.

For example, if X is the maximizer a

board position that shows 3 x’s in a row

would receive a very high score. If O is

the minimizer a board position that

shows 3 o’s in a row would receive a

very low score.

 Artificial Neural Networks are a

simulation of real neural networks

located in our nervous systems. The

neurons in the nervous system contain 3

parts, the cell body, the dendrites (input),

and the axon (output). The axons of one

neuron are connected to any number of

dendrites of other neurons. The neuron

will take all of its inputs, and analyze

them, and if they meet certain

requirements, it will send pulses out its

output. An Artificial Neural Network

works on the same idea. The nodes in a

neural network contain any number of

inputs and outputs. Each node has a

threshold, which means if the sum of all

its inputs goes beyond the threshold, it

will turn on its outputs. Each output of a

node has an associated weight with it.

This weight is multiplied by the output

value before it is added in the

summation of the inputs of the next

node.

 Genetic Algorithms are a method of

evolving data to find the best solution to

a problem. They are inspired by

Darwin's theory of evolution. The

solution to a problem is evolved by

keeping the best parts of one solution,

and combining them with the best parts

of another solution. Just like in nature, a

genetic algorithm has generations. Inside

of a generation is a population of

potential solutions to a problem. The

population of the next generation is

created by mating two members of the

current population. Just like in nature, an

offspring has characteristics of both of

its parents. If a member of the

population is a good solution to the

problem (has a high fitness) there is a

higher chance it will be chosen to be a

parent. Through this process, new

potential solutions are created. After a

certain number of generations, the

average fitness starts to approach the

maximum fitness, and at this point, the

maximum fitness is selected as the

solution to the problem.

 There has been a lot of work

involving neural networks and genetic

algorithms. This project is most similar

to a method described in David Fogel's

Blondie24. In this book he uses evolved

neural networks to co-evolve a checkers

player that utilizes the minimax search

algorithm to make move decisions. A

similar method is used here to co-evolve

a tic tac toe player.

 The results of these experiments are

promising. The neural net players were

evaluated against the perfect player, and

after some time, they had a player that

could tie the best player. The average

evolved player was not playing the

perfect player to a draw all the time, but

there were members of the population

who were. Letting the GA run for more

generations could have changed this.

 The rest of this paper will be setup as

follows. The first part will go over how

the experiment was setup. How the

genetic algorithm was used, how the

neural net was created, how the perfect

player was utilized, and what data was

used will be described in detail. The

second part will display the results

generated from the experiments. And

finally, some conclusions will be made

as well as a brief discussion on future

work.

Methodology

 This project utilized the MiniMax

Algorithm, Neural Networks, and

Genetic Algorithms to create a Tic Tac

Toe player. How each of the three were

individually used is described below,

followed by how they all interacted with

each other.

 The MiniMax Algorithm is a search

algorithm used to determine the best

move in a 2 player turn based game

where each player knows all of his

opponents potential moves. The more

moves (ply) a player can look into the

future, the better prepared the player will

be to make a more accurate decision. In

this experiment, the number of ply for

each player to look ahead was

configurable in a configuration file. I

tested ply from 1 to 4, with 4 being the

optimum for a tic tac toe game. To

evolve players, I used a static evaluator

which is known to be ‘unbeatable’. This

evaluator returns a score of a board

given the location of the x marks and the

o marks. It was also used to determine

the quality of the 2 populations that were

evolving against each other in my

second experiment. The static evaluator

looked at all the pieces on the grid. It

counted wins as +30 (if x won) or -30 (if

o won), almost wins (2 in a row with a

potential for a win) as +20 or -20, and

blocks (2 in a row with the other token

blocking the win) as +10 or -10. so if

the ply was set to 4, the x player would

generate all combinations 4 ply into the

future, evaluate all boards at that level

using the static evaluator, and then use

the minimax algorithm to ultimately

make the correct decision as to which

way to go. The evolving populations of

neural networks were used as a neural

network evaluator as opposed to the

static evaluator. The specifics of the

neural net are laid out below, but

basically the neural net was used to

return a value for each potential board

layout, returning a high score for board

that x would like (the maximizer) and a

lower score for a board that o would like

(minimizer).

 The neural network used in these

experiments is used to evaluate board

layouts. Each board has an associated

score for it generated by the neural net.

This value is then used by the minimax

algorithm to make the correct decisions.

The neural net has 9 inputs, which

correspond to the nine spaces on a tic tac

toe board. The inputs are a 1 if there is

an X in that location, a -1 if there is an O

in that location and a 0 if that location is

empty. The neural net used here has 2

hidden layers, with 1 output. The output

is the score of that particular board. The

hidden layers consist of 18 nodes in the

first layer followed by 5 nodes in the

second layer. All 9 inputs are wired to

all 18 nodes in the first hidden layer, and

all 18 nodes in the first hidden layer are

wired to the 5 nodes in the second layer.

The weights and thresholds varied from -

8 to 8, and were determined by the

genetic algorithm. The overall structure

of the net remained constant, but the

values of the thresholds and weights

were evolved.

 The genetic algorithm was used to

evolve the weights and thresholds inside

of the neural network. The GA used a

crossover rate of 0.667 with roulette

wheel selection and a mutation rate of

0.001. The GA was run for 100

generations and the data was averaged

over 5 trials. The population size was

set to 100. Each member of the

population had a chromosome length of

590 bits. This was for the 95 weights

and 23 thresholds in the neural net.

Each value was allotted 5 bits. The

value for each of the parameters was

created as follows. The 5 bits were

converted to an integer, then divided by

2. That number was then added to -8 to

come up with that particular value.

 All three of these AI components

were interconnected to create a tic tac

toe player. Two experiments were

performed. One involving 1 neural net

evolving against a known good player,

and the other involving 2 neural

networks evolving against each other

with the static evaluator being used as a

benchmark. In the first experiment, the

GA would chose settings for the neural

network and then create the network.

That network would be passed into a tic

tac toe game, where a game would be

played against the known good static

evaluator. Once a winner was

determined, the tic tac toe game would

evaluate the final board positions and

return a value of that board. The GA

would then use that value to perform

roulette wheel crossover and mutation, if

needed, on the entire population. In the

second experiment, the GA maintained 2

sets of populations and put them head to

head in a tic tac toe game. Each member

of a population would play the top five

of the other population and the total

score would be totaled and used for the

roulette wheel crossover. In order to

determine how the population was

evolving, each member of each

population played the known good static

evaluator. These runs were only used to

evaluate the members in the population

against a known point. All decisions for

crossover were based on their scores in

head to head competition.

Results

 The initial results from these

experiments are promising. In the first

experiment (1 evolving neural net vs a

known good opponent), two different

configurations of the program were run.

The first configuration set the ply for

both players at 4. The GA was run for

100 generations, and the results were

averaged over 5 trials with different

initiating seeds. The fitness range was

expected to be between 0 and 480, with

480 meaning the neural net won every

game, and 0 meaning the static evaluator

won every game. A score of 240 meant

every game was a draw. Prior to

running the experiment at 4 ply, I

expected the GA to produce a player that

would achieve a score of 240. Since

there was no way to beat the static

evaluator at 4 ply, the best I could expect

the neural net to do was to draw. And

thats exactly what happened. After 100

generations, there was always someone

who consistently scored a fitness of 240.

The average fitness of everyone in the

population was 181.3. That means the

average neural net would lose some time

against the static evaluator.

 A second experiment was performed

which was set up the same was as the

previous, except for one small change.

The static evaluator, which was known

to be perfect at 4 play, was set to only

look ahead 1 move (1 ply). That was the

only change that was made, and the GA

was once again run to create and

evaluate neural networks. I expected the

neural networks to have a much higher

fitness. The results were at first

somewhat surprising. After 100

generations, the optima had flattened out

at 190. This means that no neural net

had been evolved that could draw or beat

the static evaluator at 1 ply, even when

the neural net was configured for 4 ply.

Thinking about why this happened, I

have come up with the following theory.

You are only as good as your opponent.

And since the network was attempting to

learn to play tic tac toe against someone

who basically did not know what he was

doing, the neural net learned to make the

same bad decisions.

 In the second part of this project, the

GA maintained 2 separate populations of

neural network parameters, and played

the top performers from one population

against all the other members of the

other population. The quality of the

neural networks being created was

monitored by having each member of

each population play the static evaluator

to a ply of 4 to see how good they really

were. I expected to see results very

similar to the first experiment where

members of the population would start to

achieve a score of 240, meaning they

were playing the perfect player to a

draw. After 100 generations, the optima

had flattened out at 240 for each of the

populations, which showed that they

both had evolved players who could play

the known perfect player to a draw every

time. The average player for each

population was at 179.1. This again

means that the average player in the

population was not as good as the known

perfect player, but each population did

have members who could play the

perfect player to a draw. The similarity

between the co-evolved results and the

single evolving neural net show that the

co-evolution was working, although it

did not produce results that were any

better than evolving against a known

good player. The benefit is that if a

known good player is not available, or

not definable, the co-evolution process

will produce members who are good

players.

Conclusions/Future Work

 The results show that co evolution

can produce as accomplished of a tic tac

toe player as evolving a single

population against a known perfect

player. I was a little surprised that the

average player in the population ended

up being as bad as they did, but I think

changing the GA to use rank selection,

as well as utilizing elitism could have

bumped up the average.

 To continue this project, I would like

to take the knowledge obtained here and

use it in non-turn based games. I think

using a GA with a neural net should

yield good results if the GA and the

neural net are structured correctly. The

other interesting part which needs

further investigation, is the creation of

the neural net itself. My neural net

layout was based on quite a bit of

different neural net layouts that have

been created in the past. There was no

designing this neural net to be specific

for a tic tac toe game. It would be

interesting to use a genetic algorithm to

create neural network layouts and then to

use another GA to populate the weights

and thresholds. This would be a GA

within a GA. Besides taking up a lot of

CPU power, this should result in the

perfect neural net overall layout, as well

as the perfect weights and thresholds for

that neural network.

References

1. David E. Goldberg, Genetic algorithms in search, optimization and machine learning

 1989, Addison-Wesley.

2. Patrick Henry Winston, Artificial Intelligence 1992, Addison-Wesley

3. Dacid Fogel, Blondie24 2001, Morgan Kaufmann

