
Finding Attack Strategies for Predator Swarms Using Genetic Algorithms

Ryan E. Leigh
University of Nevada, Reno

Reno, NV 89557
leigh@cse.unr.edu

Tony Morelli
University of Nevada, Reno

Reno, NV 89557
morelli@cse.unr.edu

Sushil J. Louis
University of Nevada, Reno

Reno, NV 89557
sushil@cse.unr.edu

Monica Nicolescu
University of Nevada, Reno

Reno, NV 89557
monica@cse.unr.edu

Chris Miles
University of Nevada, Reno

Reno, NV 89557
miles@cse.unr.edu

Abstract- Behavior based architectures have many pa-
rameters that must be tuned to produce effective and be-
lievable agents. We use genetic algorithms to tune sim-
ple behavior based controllers for predators and prey.
First, the predator tries to maximize area coverage in a
large asymmetric arena with a large number of identi-
cally tuned peers. Second, the GA tunes the predator
against a single prey agent. Then, we tune two preda-
tors against a single prey. The prey evolves against a de-
fault predator and an evolved predator. The genetic al-
gorithm finds high-performance controller parameters
after a short length of time and outpaces the same con-
trollers hand tuned by human programmers after only
a small number of evaluations.

1 Introduction

This paper is a preliminary investigation into designing con-
trollers for swarming predators and defending prey for a
computer game. Swarms rely on using many easily replace-
able and expendable units. For example, by easily replace-
able we mean that if one bee is lost defending the hive, there
is another to replace it and probably another one soon to be
born. To be expendable means that the loss of the unit will
not result in critical failure of the swarm. In other words,
no task rests entirely on one unit’s shoulders nor is there
any centralized command. If removing an agent, the swarm
should operate just as it did before, possibly reorganizing
itself to maintain performance. Again, if a bee dies, even
the queen, the swarm can continue to attack.

Prey, on the other hand, have a more difficult task. If the
prey cannot fight back, its only tactic is to escape, but with
predators capable of attacking from all sides, this tactic may
not work. If the prey can fight back, it must ensure that it
does not get overwhelmed or cornered and must maneuver
to expose its strengths and hide its weaknesses.

Games provide a good application area for studying
predator and prey behavior, both for entertainment and for
serious simulations like those used in training. A training
game needs to provide challenging opponents to be useful.
The opponents can be entities in the game world controlled
by humans or controlled by game AI. However, there may
not be enough humans to control the large numbers of en-
tities that constitute a swarm. Current game AI for control-

ling many units may be capable of planning an attack en
massè, but exhibit limited cohesion or coordinated planning
capabilities. We seek a more coordinated control strategy
and a game AI appropriate for use in these types of games.

Our goal is to have agents learn how to attack as a swarm
or defend against a swarm. However, in order to develop
good prey behavior you need to train the prey against a good
predator. Similarly in order to develop a good predator,
you need to train the predator against a good prey. This
cyclical dependence indicates our system’s suitability for
co-evolution and our long term goal focuses on investigat-
ing co-evolutionary approaches to swarming predator-prey
systems. We describe in this paper our initial efforts to es-
tablish a baseline for our long term goals and investigates
the following questions: How should controllers for such
agents be designed? How and what should the agents learn?
What is a successful attack or defense? Our results show
how simple behavioral controllers can be parameterized and
optimized via a genetic algorithm to find attack strategies
for one or two predators and the defense strategies against
the predators. With both predators and prey to evolve, these
investigations provide the preliminary steps for using co-
evolution.

This paper is organized as follows: the next section pro-
vides a brief introduction into behavioral controllers. Sec-
tion 3 describes the simulation that tests these controllers.
Sections 4 and 5 describe our experimental methodology.
Section 6 contains the results. Conclusions, observations,
and future work are provided in Section 7.

2 Background

2.1 Behavioral Controllers

Behavior-Based Control (BBC) has become one of the most
popular approaches for embedded system control in re-
search and in practical applications [2, 6]. Behavior-based
systems employ a collection of concurrently executing pro-
cesses, which take input from sensors or other behaviors,
and send commands to actuators. Sensor inputs determine
the activation level of a process, for example, whether the
process is on or off, and in some systems by how much.
These processes, called behaviors, represent time-extended
actions that aim to achieve or maintain certain goals, and



are the key building blocks for more complex, intelligent
behavior.

BBC’s modularity and robust real-time properties make
it an effective approach for robot and autonomous agent
control. While BBC constitutes an excellent basis for
our chosen domain, developing behavior-based systems re-
quires significant effort from the part of the designer. In par-
ticular, the choosing parameters intrinsic to the robot’s be-
haviors consumes much time. Programmers need to choose
and test numerous parameter values and their combinations
in order to achieve a behavior with desired characteristics,
such as smooth trajectories, effectiveness, and ability to
reach the goal.

In this paper, we equip the robot with a set of behav-
iors and we propose an approach to learning the behaviors’
specific parameters using an evolutionary approach. Ge-
netic algorithms (GA) have been successfully employed for
tuning, designing and programming robots. For example,
Sims used a variable length tree encoding that built simu-
lated robots from blocks and motor actions to competitively
evolve simulated robots from the ground up [9]. Schultz,
used GAs to find the rules that decide when to activate a
behavior [8]. Gruber used a GA to tune a neural network
for a predator in a predator-prey environment [4]. Louis
and Li combined memory with the GA to evolve robotic be-
haviors [5]. In contrast with these previous approaches, our
work proposed in this paper examines the preliminary steps
needed for co-evolution between predator and prey.

3 Simulation

We have developed a 2D simulation for evaluating the fit-
ness of attack and defense strategies. Our simulation de-
sign needed to be simple and fast for quick evaluations of
individuals in the GA. We prefer coarse yet quick fitness
evaluations to accurate yet lengthy simulations and there-
fore simulate simple predators and prey. Predators and prey
only move with a certain speed and heading. A predator
wins if it manages to collide with its prey, otherwise the
prey wins if it manages to avoid colliding with the predator
and survives until time runs out.

3.1 Environment

Figure 1 shows the environment map is made up of fixed-
sized tiles that are either traversable (dark areas) or non-
traversable (light areas). Non-traversable tiles allow for fast
and easy collision detection and easier finding of surround-
ing barriers. For this study, the map is 258 tiles by 97 tiles
which suits our needs and matched multiples of our moni-
tor’s screen resolution.

3.2 Agents

Each predator unit has two sensors and two effectors. The
barrier sensor returns the distance to, and direction of, the
center of all non-traversable tiles within a certain parameter-
izable range. The beacon sensor returns the distance, label,
and direction of every other agent’s location simulated by

Figure 1: Environment Map

pretending the agent has an omni-directional beacon cor-
responding to the center of that agent. The two effectors
allow the controller to specify a desired direction and de-
sired speed. See Figure 2 for a diagram. The direction and
speed are labeled as “desired” because the simulation will
slowly change the controller’s state to match these parame-
ters rather than instantly set the values. Prey cannot accel-
erate or turn as fast as the smaller and more nimble preda-
tors. Since maneuverability is one of the most important
components in any strategy, we model this facet to improve
solution quality.

Figure 2: Diagram of Sensors and Effectors. Circles repre-
sent agents

Four behaviors control each predator: wander, track tar-
get, avoid barriers, and avoid beacons. Wander and track
target specify desired agent direction while avoid barriers
and avoid beacons specify desired agent speed. Wander
chooses a random new desired heading after a random time
interval. Track target moves the controller towards a target,
in this case, the prey. All entities in the simulation have a
unique label that also identifies them as predator or prey.
Wander provides a way to get around obstacles and explore
the environment. The controller will not start using track
target until the target is within a certain range, otherwise an
over zealous attack approach could have the predator get-
ting stuck on a barrier. The GA finds the value of this range
parameter. Avoid Barriers and avoid beacons will slow the
agent down if it gets too close to land or another entity re-
spectively, otherwise, they will allow the controller to go
full speed. The GA also finds how close an obstacle needs
to be and how much to slow down. While attacking a target,
avoid beacons suppresses itself if the obstacle that would



slow the agent down is, in fact, the target the predator is
attacking.

Each behavior outputs a value corresponding to the mag-
nitude and direction of an effector’s action. For example,
speed values between 0 and 1 determine how fast the preda-
tor moves. Thus each behavior outputs a vector for each ef-
fector and a weighted vector sum of these behavior-output-
vectors determines the agent’s observed action. Behavior
priorities determine the weights in the vector sum. For ex-
ample, the closer one agent gets to another agent, the greater
the increase in the weight for avoid beacons resulting in a
greater push away from the other agent [1, 7].

The prey unit in this experiment has two goals. First,
follow the non-traversable tiles. Second, follow boundaries
without running into any non-traversable tile or any other
entities in the world. If the prey detects an attack, it can
suspend its boundary following task and evade the predator,
however at any point avoiding non-traversable tiles takes a
higher priority. Once a prey determines it is under attack, it
will do whatever is possible to avoid contact with the preda-
tor outside of running into non-traversalbe tiles. Two ways
determine if a prey is under attack. First, if any agent comes
within a certain distance of the prey, the prey assumes it
is under attack. Second, the prey will attempt to predict
where all other entities are going and if they are on a colli-
sion course, the prey will attempt to change its path in such
a way that the projected collision will never happen. Once
the prey notices it is no longer under attack, it will go back
to following boundaries.

3.3 Simulation Process

One evaluation consists of a number simulation trials over a
length of time with discrete time steps. The length of time
and number of time steps are given in milliseconds. A 5
minute simulation at 50ms length time steps is equivalent
to 6, 000 steps. Each trial restarts all the entities in the envi-
ronment at one of three new locations and starts the simula-
tion over again. Thus, the GA will not tune the controller to
a certain starting location.

All agents move according to their set speed, multiplied
by the length of the time step. Agents have access to all the
information within the simulation and there is no noise. We
are working on games and therefore these perfect sensors
do not provide an issue.

4 Methodology

Our GA evaluates population members in parallel across
multiple machines. The ability to run multiple simulations
drastically speeds up the run time of the GA. We use a
master/slave model with one server and multiple clients or
nodes as shown in Figure 3. The server sends an individ-
ual to be evaluated to each of the clients. Each client then
starts up the simulation and passes the individual to the con-
trollers that are being evolved. The simulation begins after
the agents are properly initialized. At the simulation end,
the controller measures its fitness and hands it to the simu-
lation. The simulation combines these fitnesses to describe

that individual’s final fitness. The simulation sends that fit-
ness back to the GA and the simulation receives a new in-
dividual. The process continues until all individuals have
been evaluated.

Figure 3: GA Implementation

4.1 Parameters

We ran the GA for the predator experiments over 20 gener-
ations with a population of 50. The probability of crossover
is 0.7 with a 0.01 probability that a bit will be flipped. The
GA used fitness proportional selection to choose parents.
Offspring doubled the size of the population and we kept the
best n, where n is the population size, for further processing
[3]. The prey experiments differed by using a mutation rate
of 0.1 and only had a population of 20.

4.1.1 Encoding

Table 1 shows the encoding of the predator genome and con-
sists of 118 bits used for tuning. The last three parameters,
moveToWeight, moveToC1, and moveToC2, all tune an in-
verted sigmoid function. This function’s output is used as a
weight for track target. If the target is far away, track traget
has less weight and the predator is less inclined to move to-
wards the prey. The sigmoid function was chosen to allow
for a smooth transition from wandering to tracking. For the
prey, we used 51 bits as shown in Table 2. The distances
use TooClose as a baseline value, and the next farthest is
greater than the previous by a certain offset. For example,
if TooClose was 20 yards and Close had a value of 10, then
an entity would be considered close at 30 yards. The same
applies to the speed values.

Parameter Bits Description
Far 8 Threat is Far
Near 8 Threat is Near
Close 8 Threat is Close
TooClose 8 Threat is Too Close
turningRate 4 Rate to turn the prey
visionRange 3 Finds if something near prey
normalSpeed 7 Prey travels at normal speed
fastSpeed 7 Prey travels at fast speed

Table 2: GA Parameter Encodings for Prey



Parameter Range Bits Description
turnRate 0-0.128 7 Rate agent turns when stuck for avoid barrier and avoid beacons
minSpeedTillTurn 0-0.128 7 Speed at which agent gets stuck for avoid barrier and avoid beacons
changeHeadingTime 0-10240 10 Random interval for new direction in wander
maxBarrierSpeed 0-0.512 9 Max speed that avoid barrier will allow
maxBarrierDistance 0-256 8 Distance that avoid barrier looks at
stopBarrierDistance 0-256 8 Distance that the agent stops for barriers in avoid barrier
BarrierFOV 0-128 7 Arc in front of agent that avoid barrier looks at
maxBeaconSpeed 0-0.512 9 Max speed that avoid beacons will allow
maxBeaconDistance 0-256 8 Distance that avoid beacons looks at
stopBeaconDistance 0-256 8 Distance the agent stops at for beacons in avoid beacons
beaconFOV 0-128 7 Arc in front of agent that avoid beacons looks at
moveToWeight 0-102.4 10 Effects distance at which predator starts tracking prey in track traget
moveToC1 0-102.4 10 Effects distance at which predator starts tracking prey in track traget
moveToC2 0-102.4 10 Effects distance at which predator starts tracking prey in track traget

Table 1: GA Parameter Encodings for Predator

5 Experiments

In this study, we performed four experiments to test various
aspects of the controllers as well as the performance. The
four experiments can be broken into two categories: wan-
dering and attack. For every experiment, we hand-tuned a
controller to find what was the best overall behavior. We
then run the simulation and find the hand-tuned controller’s
fitness in each of the four experiments.

5.1 Wandering

Wandering tests to see how much area the controllers could
cover with no target on the map and the area covered deter-
mined fitness. We overlaid a grid on the environment map
and added a point for every new grid cell covered by the
agent and removed one hundredth of a point for every time
cycle the agent remained in that cell..

With this scoring system in mind, we tried two grid sizes.
The fine grid has cells sized the same as the tiles (Figure 4).
This makes it easier for controllers to discover many new
cells while receiving a smaller penalty. We hypothesized
that this would cause robots to not explore as much as there
is a wealth of new tiles in only a small range.

Figure 4: Fine Grid

To counteract this local exploration, a coarser grid was
designed that that would force the controllers to strike out

in new directions (Figure 5). Staying local would incur
larger penalties to fitness to the agent.

Figure 5: Coarse Grid

We ran each simulation with 27 agents placed around the
map, all sharing the same genome, for 10 minutes at 50ms
time steps. An agent crashing into either a barrier or another
agent would receive a fitness of zero.

5.2 Single predator attack strategy

A lone predator’s accomplishments provide a baseline for
evaluating multiple-predator attack strategies. One predator
cycles between three starting locations on one side of the
map and the prey starts at one location on the other side of
the map. One evaluation consists of six simulation trials.
An empirically chosen constant minus the distance between
the predator and prey equals the fitness for a single trial as
given below.

fitness = C − Distance(predator, prey) (1)

A collision between the predator and the prey receives a
maximum score. If the predator dies before it reaches the
prey, it receives zero points. If the prey crashes before
the predator could arrive, the predator receives zero points
also. The predator does not get rewarded for mistakes on
the prey’s behalf. The downside lies in that the predator
receives no reward if the predator causes the prey to crash.



5.3 Dual predator attack strategy

The setup for dual predators follows the single predator
strategy except that the each predator gets a different start-
ing point at each trial. Thus, if during the first trial starting
points 1 and 2 were used, in the next points 2 and 3 would
be used. The highest fitness of the two predators determines
the overall fitness for that trial. Only one predator has to
succeed for the whole team to succeed.

5.4 Prey defense strategies

We designed the prey experiments follows: First, the eval-
uator finds the baseline fitness by running the hand-tuned
predator against the hand-tuned prey. Next, we evolved the
prey against the hand-tuned predator and also evolved the
predator against the hand-tuned prey. We used the evolved
prey and the evolved predator to evaluate against each other.
Finally, the GA evolved a new prey against the evolved
predator to find the final fitness results.

6 Results

6.1 Wandering

The results of fine grid wandering and coarse grid wander
are given in Figures 6 and 7 respectively. Both experi-
ments were done over five runs each with a different ran-
dom number generator seed. Table 3 shows the averages of
maximum fitnesses for the Hand-Tuned controller and GA-
Tuned controller as well as percent improvement.

Figure 6: Fine Grid Fitness

We find it interesting that the fine grid wandering pro-
duced better results although not enough runs were per-
formed to find these results statistically significant. We can-
not say what is optimal performance with either grid. Large
areas of the map are inaccessible due to barriers and an
agent cannot cover a new tile every time tick because they
cannot travel that fast. Despite this, the evolved controller
fitness increased around 400 percent, a vast improvement.

The nature of the each differently evolved controllers
from each seed varied greatly. In either fine grid or coarse

Figure 7: Coarse Grid Fitness

grid wandering, some controllers would dart for long peri-
ods of time, some would loop in circles and slowly work
across the map, and others would fall somewhere in be-
tween. No one style correlated to any particular ranking
in the set of trials. Choosing the best could just be picking
the most aesthetically pleasing.

6.2 Attack

The hand-coded controller never completed an attack in the
simulation. The controller worked fine in simpler scenar-
ios, but could not deal with more complicated routes to the
prey. This controller uses a more passive, lay-in-wait type of
strategy. In the future, the prey could take a more aggressive
stance in defense by destroying predators that are attacking,
thus the hand-coded controller tries to look as innocent as
possible, waiting until the last second to strike. The GA
quickly exploits the fact the prey cannot strike back and the
predator moves as quickly as possible towards the prey. The
maximum possible fitness for a run is 30,000: 5,000 for a
successful attack over six trials (Figure 8). This weakness
lets the average fitness gets quite close to the optimal fitness
and the best individual achieves this fitness.

Contrary to our expectations, the single predator’s fitness
overtakes the dual predator fitness in the last few genera-
tions. Our prior considerations held that multiple lines of
attack would increase the chances of success. What we can
observe tells us that as the GA makes the controllers more
and more aggressive, both predators reach the prey more of-
ten. Because both are heading towards the same target, they
often get in each others path and slow down to avoid hitting
each other. This courtesy among predators means the prey
can keep away from the predators thus lowering their total
fitness. Therefore, almost the entire time the two predators
do better than one, but get too competitive as they get better.

6.3 Defense

Table 4 shows the results of various prey versus different
predator configurations by giving the average fitnesses of
four runs through the simulation each with a different seed.



Average Fitness Hand Tuned GA Improvement
Fine Grid 4679.24 19894.47 425.16

Coarse Grid 431.05 1725.03 400.19

Table 3: Average Fitness for Fine and Coarse Grid

Figure 8: Comparative Attack Fitness

The evolved prey and predators use the maximum fitness
individuals from a run through the GA.

Experiment Fitness Improvement
Def. Prey vs. Def. Predator 90310 N/A
Ev. Prey vs. Def. Predator 199819 +221%
Def. Prey vs. Ev. Predator 43476 -48%
Ev. Prey vs. Ev. Predator 27671 -70%
ReEv. Prey vs. Ev. Predator 193972 +214%

Table 4: Average Fitness for Prey against Predators
Avg: Average, Ev: Evolved, ReEv: Re-Evolved

As expected, the evolved prey did very well against
the hand-tuned predator and the evolved predator did very
well against the hand-tuned prey. Surprisingly, the evolved
predator had better success against the evolved prey. We
can explain this by the fact that the prey learns a specific
evasive tactic to avoid a specific attacker. The similar re-
sults between evolving the prey against the evolved predator
and and evolving the prey against the hand-tuned predator
shows this fact.

The GA successively created an evasive tactic for a prey
against a predator. However, the poor performance against a
different opponent than the one it evolved against illustrates
that the GA over specializes. This result can be expected
since there was no history kept of the past strategies used
against different opponents.

7 Discussion

Our current work has shown many abilities of genetic al-
gorithms in tuning agent controllers. First, effective perfor-
mance can be found even with simple behaviors. The result-

ing performance exceeds by far those controllers designed
by extensive hand-tuning.

Second, the GA produces these results much faster. A
day of meticulous nudging and tweaking takes only a few
minutes for the GA to start exceeding the hand-tuned con-
troller and an hour to finish with a five times gain in perfor-
mance.

Third, the GA serves to highlight the difficulty in evalu-
ating robotic performance. There exists a cyclic dependency
between predator and prey. To program a good predator and
evolve it, there has to be a challenging prey and to program
that prey, a good predator is needed. Without either, the
GA quickly exploits weaknesses of either the predator or
the prey. We believe that co-evolution can solve this prob-
lem.

Fourth, the GA will exploit any flaw in the design of
the scenario, the prey, or the predator. The GA does not
strive to make an intelligent or believable predator, it can
only maximize the fitness, Evaluators cannot simply judge
intelligence and believability. As such, additional methods
need to be employed to nudge the agent in the right direc-
tions and a more versatile controller needs to be designed.

Last, there are many directions in which the prey can
become better. Greater predator detection efficiency would
allow the prey more time to plan, thus spending less time
trying to lose the predator. With co-evolution, we should
be able to develop an evasive tactic that works for an entire
generation of attackers.

7.1 Conclusions and Future Work

We have demonstrated an evolutionary approach for tuning
Behavior-Based Controllers that provide preliminary steps
for using co-evolution. We experimented in a predator-prey
scenario in which a predator is evolved against a hand-tuned
prey and prey that evolves against a hand-tuned predator and
an evolved predator. We find that the GA-tuned controller
outperforms the hand-tuned controller by 400 percent. The
GA over specializes both the predator and the prey to their
opponent and we expect using co-evolution would train the
predators and prey against a variety of opponents, thus al-
lowing for more general knowledge. We believe evolving
efficient predators and prey is a natural candidate for co-
evolution. The first run of this experiment only had preda-
tors evolving against a static prey and vice versa. We could
provide a variety of interesting avenues to explore using co-
evolution of predators and prey.

As one of our reviewers pointed out, we may be able to
increase the performance of two predators if we add a com-
munications channel to facilitate the emergence of cooper-
ative behavior. In this particular example, if one predator
gets too close to the other predator, a message can cause the



other predator to slow down thus allowing an unimpeded at-
tack by the first predator. We believe that allowing commu-
nication will allow more sophisticated plans through syn-
chronization and teamwork.

Additional forms of learning are also needed. A GA can
only optimize based on an evaluator function, but due to the
multi-modal nature of the search space, many different per-
sonalities can arise as was seen in the wandering behavior.
Biasing though case-injection or parameterizing the behav-
ior based on control from a human player could push the
GA in the right direction. Alternatively, an existing con-
troller can be nudged into a more human-like behavior by
recording human-play.

8 Acknowledgments

This material is based upon work supported by the Office of
Naval Research under contract number N00014-03-1-0104.

Bibliography

[1] Ronald Arkin. Motor schema based navigation for a
mobile robot: An approach to programming by behav-
ior. In Proceedings of the IEEE Conference on Robotics
and Automation, pages 264–271, 1987.

[2] Ronald C. Arkin. Behavior-Based Robotics. MIT Press,
CA, 1998.

[3] Larry J. Eshelmann. The CHC Adaptive Search Algo-
rithm: How to Have Safe Search When Engaging in
Nontraditional Genetic Recombination. Morgan Kauff-
man, 1990.

[4] Kerry Gruber, Jason Baurick, and Sushil J. Louis. Evo-
lution of complex behavior controllers using genetic al-
gorithms. In Proceedings of the International Confer-
ence on Artifcial Intelligence, Las Vegas, Nevada, 2002.

[5] Sushil J. Louis and Gan Li. Combining robot control
strategies using genetic algorithms with memory. In
Lecture Notes in Computer Science, Evolutionary Pro-
gramming VI, pages 431–442.

[6] Maja J. Matarić. Behavior-based control: Examples
from navigaton, learning, and group behavior. Journal
of Experimental and Theoretical Artificial Intelligence,
9(2–3):323–336, 1997.

[7] David Payton. Internalized plans: A representation for
action resources. In Robotics and Autonomous Systems,
volume 6, pages 88–103. 1990.

[8] A. Schultz, J.J. Gregenstette, and W. Adams. Ro-
boshepherd: Learning a complex behavior. In
RoboLearn ’96, The Robots and Learning Workshop a
FLAIRS, May 1996.

[9] Karl Sims. Evolving 3d morphology and behavior by
competition. In P. Maes R. Brooks, editor, Artifical Life
IV, pages 29–39. MIT Press/Bradford Books, 1994.


